1,792 research outputs found
On the Newtonian Anisotropic Configurations
In this paper we are concerned with the effects of anisotropic pressure on
the boundary conditions of anisotropic Lane-Emden equation and homology
theorem. Some new exact solutions of this equation are derived. Then some of
the theorems governing the Newtonian perfect fluid star are extended taking the
anisotropic pressure into account
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
The affine rank minimization problem consists of finding a matrix of minimum
rank that satisfies a given system of linear equality constraints. Such
problems have appeared in the literature of a diverse set of fields including
system identification and control, Euclidean embedding, and collaborative
filtering. Although specific instances can often be solved with specialized
algorithms, the general affine rank minimization problem is NP-hard. In this
paper, we show that if a certain restricted isometry property holds for the
linear transformation defining the constraints, the minimum rank solution can
be recovered by solving a convex optimization problem, namely the minimization
of the nuclear norm over the given affine space. We present several random
ensembles of equations where the restricted isometry property holds with
overwhelming probability. The techniques used in our analysis have strong
parallels in the compressed sensing framework. We discuss how affine rank
minimization generalizes this pre-existing concept and outline a dictionary
relating concepts from cardinality minimization to those of rank minimization
Epidemiology of female reproductive cancers in Iran: Results of the gholestan population-based cancer registry
Background: Malignancies of the female reproductive tract are estimated to be the third most common group of cancers in women. Objectives: We here aimed to present their epidemiological features in Golestan provincelocated in Northeast of Iran. Materials and Methods: Data on primary female reproductive cancers diagnosed between 2004-2010 were obtained from Golestan Population-based Cancer Registry (GPCR). CanReg-4 and SPSS software were used for data entry and analysis. Age standardized incidence rates (ASR) (per 100,000 person-years) were calculated using the world standard population. Poisson regression analysis was used to compare incidence rates. P-values of less than 0.05 were considered as significant. Results: A total of 6,064 cancer cases were registered in Golestan females in the GPCR during 2004-2010, of which 652 cases (11%) were female reproductive cancers. Cancers of the ovary (ASR=6.03) and cervix (ASR=4.97) were the most common. We found significant higher rates in females living in cities than in villages. Our results showed a rapid increase in age specific incidence rates of female reproductive cancers at the age of 30 years. Conclusions: We found significant higher rates of female reproductive cancers among residents of cities than villages. Differences in the prevalence of risk factors including reproductive behavior between the two populations may partly explain such diversity. Our results also showed a rapid increase in incidence rates of these cancers in young age females. Further studies are warranted to determine risk factors of female reproductive cancers in our population
Multi-GeV Electron Generation Using Texas Petawatt Laser
We present simulation results and experimental setup for multi-GeV electron generation by a laser plasma wake field accelerator (LWFA) driven by the Texas Petawatt (TPW) laser. Simulations show that, in plasma of density n(e) = 2 - 4 x cm(-3), the TPW laser pulse (1.1 PW, 170 fs) can self-guide over 5 Rayleigh ranges, while electrons self-injected into the LWFA can accelerate up to 7 GeV. Optical diagnostic methods employed to observe the laser beam self-guiding, electron trapping and plasma bubble formation and evolution are discussed. Electron beam diagnostics, including optical transition radiation (OTR) and electron gamma ray shower (EGS) generation, are discussed as well.Physic
Synthesis and Optimization of Reversible Circuits - A Survey
Reversible logic circuits have been historically motivated by theoretical
research in low-power electronics as well as practical improvement of
bit-manipulation transforms in cryptography and computer graphics. Recently,
reversible circuits have attracted interest as components of quantum
algorithms, as well as in photonic and nano-computing technologies where some
switching devices offer no signal gain. Research in generating reversible logic
distinguishes between circuit synthesis, post-synthesis optimization, and
technology mapping. In this survey, we review algorithmic paradigms ---
search-based, cycle-based, transformation-based, and BDD-based --- as well as
specific algorithms for reversible synthesis, both exact and heuristic. We
conclude the survey by outlining key open challenges in synthesis of reversible
and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table
Symptoms associated with victimization in patients with schizophrenia and related disorders
Background: Patients with psychoses have an increased risk of becoming victims of violence. Previous studies have suggested that higher symptom levels are associated with a raised risk of becoming a victim of physical violence. There has been, however, no evidence on the type of symptoms that are linked with an increased risk of recent victimization. Methods: Data was taken from two studies on involuntarily admitted patients, one national study in England and an international one in six other European countries. In the week following admission, trained interviewers asked patients whether they had been victims of physical violence in the year prior to admission, and assessed symptoms on the Brief Psychiatric Rating Scale (BPRS). Only patients with a diagnosis of schizophrenia or related disorders (ICD-10 F20–29) were included in the analysis which was conducted separately for the two samples. Symptom levels assessed on the BPRS subscales were tested as predictors of victimization. Univariable and multivariable logistic regression models were fitted to estimate adjusted odds ratios. Results: Data from 383 patients in the English sample and 543 patients in the European sample was analysed. Rates of victimization were 37.8% and 28.0% respectively. In multivariable models, the BPRS manic subscale was significantly associated with victimization in both samples. Conclusions: Higher levels of manic symptoms indicate a raised risk of being a victim of violence in involuntary patients with schizophrenia and related disorders. This might be explained by higher activity levels, impaired judgement or poorer self-control in patients with manic symptoms. Such symptoms should be specifically considered in risk assessments
Crystal Chemistry and Phonon Heat Capacity in Quaternary Honeycomb Delafossites: Cu[Li_(1/3)Sn_(2/3)]O)2 and Cu[Na_(1/3)Sn_(2/3)]O_2
This work presents an integrated approach to study the crystal chemistry and phonon heat capacity of complex layered oxides. Two quaternary delafossites are synthesized from ternary parent compounds and copper monohalides via a topochemical exchange reaction that preserves the honeycomb ordering of the parent structures. For each compound, Rietveld refinement of the powder X-ray diffraction patterns is examined in both monoclinic C2/c and rhombohedral R3̅m space groups. Honeycomb ordering occurs only in the monoclinic space group. Bragg peaks associated with honeycomb ordering acquire an asymmetric broadening known as the Warren line shape that is commonly observed in layered structures with stacking disorder. Detailed TEM analysis confirms honeycomb ordering within each layer in both title compounds and establishes a twinning between the adjacent layers instead of the more conventional shifting or skipping stacking faults. The structural model is then used to calculate phonon dispersions and heat capacity from first principles. In both compounds, the calculated heat capacity accurately describes the experimental data. The integrated approach presented here offers a platform to carefully analyze the phonon heat capacity in complex oxides where the crystal structure can produce magnetic frustration. Isolating phonon contribution from total heat capacity is a necessary and challenging step toward a quantitative study of spin liquid materials with exotic magnetic excitations such as spinons and Majorana fermions. A quantitative understanding of phonon density of states based on crystal chemistry as presented here also paves the way toward higher efficiency thermoelectric materials
- …
