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Abstract In this paper we are concerned with the effects
of an anisotropic pressure on the boundary conditions of the
anisotropic Lane–Emden equation and the homology theo-
rem. Some new exact solutions of this equation are derived.
Then some of the theorems governing the Newtonian perfect
fluid star are extended, taking the anisotropic pressure into
account.

1 Introduction

The Newtonian theory of stellar structure is usually used to
describe the stars with not extremely high densities [1,2].
Even for high density compact objects like white dwarfs and
neutron stars, applying Newtonian gravity leads to acceptable
results, comparable to the results of the relativistic models
[3].

The contents of the star is often modeled by a perfect fluid
with an equation of state relating the mass density ρ and
pressure P . Among all possible choices of this equation, the
polytrope equation of state, P = Kργ is of great importance
for many astrophysical situations [1,2,4] where K and γ =
1 + 1

n are both constants called the polytropic constant and
polytropic exponent, respectively (n is called the polytropic
index). The polytrope equation is the simplest equation of
state useful for a wide range of fluid densities. Moreover, it
leads to the scale symmetry and therefore enables introducing
homology invariants [2].

On the other hand there are some phenomena leading to
the local anisotropy of pressure inside a self gravitating sys-
tem. For low density objects, the Newtonian approximation
is valid. Some of the physical mechanisms for anisotropy in
this regime are [5]:

• When there is an anisotropic velocity distribution in a col-
lisionless gas [6,7], the radial pressure satisfies the Jeans
equation:
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dPr

dr
= ρ

dφ

dr
+ 2

r
�(r) (1)

where φ is the Newtonian gravitational potential of the
fluid and we have considered a static and spherically sym-
metric distribution of matter. � = Pt − Pr, where Pr and
Pt are the radial and tangential pressure, respectively. In
this case � measures the anisotropy of the velocity distri-
butions:

� = ρ(〈V 2
r 〉 − 〈V 2

φ 〉) (2)

where 〈V 2
r 〉 and 〈V 2

φ 〉 are the radial and azimuthal veloc-
ity dispersions. (Note that according to the spherical sym-
metry assumption we have 〈V 2

φ 〉 = 〈V 2
θ 〉). Equation (1)

describes the hydrostatic equilibrium of a self gravitating
object.
To produce an anisotropic velocity distribution, consider
a galactic halo of fermionic dark matter. The conservation
of angular momentum of neutrinos streaming into the halo
leads to an anisotropic pressure [8].

• For a slowly rotating system [2,5], the equation of hydro-
static equilibrium in the first order is given by Eq. (1) in
which � = − 1

3ρω2r2 where ω is the angular velocity.
• For a mixture of two non-interacting perfect fluids, the

energy-momentum tensor is that of an anisotropic fluid
in which ρ, Pr, and Pt are some functions of the mass
densities and pressure of each component [9].

• For a low mass charged white dwarf, the repulsive elec-
trostatic force can be regarded as a source of anisotropy
[10].

According to the above cases, even in the Newtonian regime,
generally we are dealing with two components of pressure.

Here we shall focus on the Newtonian anisotropic poly-
tropes [4,11]. In the next section, first we derive the
anisotropic version of dimensionless Newtonian hydrostatic
equation, Lane–Emden equation and its boundary conditions.
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It is written in terms of physical quantities like the anisotropy
function, in contrast to the form used in [4]. We extend the
homology theorem for anisotropic polytropes and then in
Sect. 3 we derive a new set of analytical solutions. There are
some exact solutions of the Lane–Emden equation for spe-
cial values of barotropic index in arbitrary spatial dimension
[2].

In this paper, we use the ansatz that the form of the
Lane–Emden equation does not change after introducing the
anisotropy factor. First, a numerical analysis of the mass–
radius relation of an anisotropic star is presented. We find the
anisotropic modified form of the existing isotropic solutions
by the above ansatz in Sect. 3. The authors of [12,13], pro-
pose another ansatz on � in the modeling of relativistic stars.
This is used in [4] to generate some anisotropic Newtonian
polytrope solutions from isotropic solutions. Other various
assumptions on � can be found in [11]. In Sect. 4, we focus
on some integral theorems on the physical quantities of a star
in the hydrostatic equilibrium obtained by Chandrasekhar in
his book [1]. These are derived from Newtonian equations
directly without any special assumption on the internal struc-
ture of the star or the equation of state. These theorems con-
tain some inequalities containing the central pressure, the
gravitational potential and the mean gravitational accelera-
tion of a star. Here we extend these theorems to the general
anisotropic equilibrium configuration. At the end, we present
a perturbative treatment to study the effects of anisotropy in
a star.

2 Anisotropic polytropes

The hydrostatic equilibrium of a star is governed by Eq. (1).
The Newtonian potential is related to the density of the fluid
by Poisson’s equation:

∇2φ = −4πGρ. (3)

Considering the fluid obeys the polytropic equation of state
along with Eq. (1), one gets

φ(r) − φ0 = K (n + 1)

(
ρ

1
n − ρ

1
n
0

)
−

∫ r

0

2�(x)

xρ(x)
dx (4)

where ρ0 and φ0 denote the central density and gravitational
potential. We take φ0 = 0. Substituting Eq. (4) into Eq. (3)
leads to the following expression which is the fundamental
equation of equilibrium:

K (n + 1)∇2ρ
1
n − 1

r N−1

d

dr

(
r N−1 2�(r)

rρ(r)

)
= −4πGρ (5)

where N is the dimension of space.

Introducing the new dimensionless variable ξ =(
± (n+1)K

4πGρ0
1− 1

n

)− 1
2

r , and with the following definitions:

ρ = ρ0θ
n, Pr = P0θ

n+1, (6)

Equation (5) takes the following form:

θ ′′ + N − 1

ξ
θ ′

− 2

P0(n + 1)ξθn

[
�′ + N − 2

ξ
� − n

θ ′

θ
�

]
= ±θn (7)

where a prime denotes differentiation with respect to the new
radial coordinate, ξ , and the plus and minus signs correspond
to −∞ < n < −1, −1 < n < +∞, respectively. Note that
θ = θ(r) is a dimensionless function. Equation (7) is the
anisotropic version of the well-known Lane–Emden equa-
tion.

For n = −1, the polytrope equation of state gives Pr = K
if ρ �= 0. Thus according to Eq. (4), the term involving �

only contributes to the gravitational potential and the Poisson
equation gives

� = 2πGρ

r N−2

∫ r

0
xN−1ρ(x)dx . (8)

This shows that the case with n = −1 is a special case,
which must be treated separately. Whereas for the isotropic
case (� = 0), one gets ρ = 0 and therefore, n = −1 is
excluded from the further study for isotropic fluids.

The other important case arises when n = ±∞ and there-
fore the polytrope equation of state reduces to

Pr = Kρ. (9)

Replacing this in (1), we obtain

φ − φ0 = K ln

(
ρ

ρ0

)
−

∫ r

0

2�(x)

ρ(x)x
dx . (10)

The combination of the above expression when φ0 = 0 and
(3) gives

θ ′′ + N − 1

ξ
θ ′ + 2

P0ξ
eθ

(
�′ + N − 2

ξ
� + �θ ′

)
= e−θ

(11)

where ρ = ρ0e−θ , Pr = P0e−θ , and ξ =
(

K
4πGρ0

)− 1
2
r .

Either the Lane–Emden equation (7) (for n �= −1,±∞)
or (11) (for n = ±∞), contains two unknown functions, θ(ξ)

and �(ξ). Thus we need another equation to obtain a closed
system of equations.

Before describing our procedure to introduce the other
equation, let us assume that � is a given function. To obtain a
unique solution for θ one has to specify two boundary condi-
tions. The first is θ(0) = 1 (for n �= −1,±∞) and θ(0) = 0
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(for n = ±∞). In order to obtain the other condition, let us
integrate (3):

d


dr
= −r1−N

∫
0

r

4πGρxN−1dx . (12)

Combination of the above relation with (1) and (6) produces

dθ

dξ
|ξ→0 = − ξ

N
|ξ→0 + 2

P0(n + 1)
lim
ξ→0

(
�(ξ)

ξ

)
. (13)

A similar calculation for n = ±∞ leads to

dθ

dξ
|ξ→0 = ξ

N
|ξ→0 − 2

P0
lim
ξ→0

�(ξ)

ξ
. (14)

Equations (13) and (14) lead to the extensions of the Chan-
drasekhar’s theorem [1] for the anisotropic polytrope case.

Theorem 1 The finite solutions of anisotropic Lane–Emden
equation at the origin have to satisfy dθ

dξ
|ξ=0 = 2

P0(n+1)

limξ→0

(
�(ξ)

ξ

)
if n �= −1,±∞ and dθ

dξ
|ξ=0 = 2

P0
limξ→0

�(ξ)
ξ

if n = ±∞.

Another important theorem is a generalization of the
homology theorem [2].

Theorem 2 If the anisotropic Lane–Emden equation is sat-

isfied by θ(ξ) and �(ξ) then A
2

n−1 θ(Aξ) and A
2(n+1)

1−n �(Aξ)

satisfy Eq. (7), and θ(Aξ) − ln A2 and 1
A2 �(Aξ) satisfy Eq.

(11), where A is a constant.

The proof is straightforward. It can easily be obtained by
substituting these expressions in (7) and (11). Thus we obtain
a set of solutions parametrized by A.

One usual approach to solve (7) (or 11) with boundary
conditions obtained in theorem I, is to suppose a special form
for �. Then putting it into (7) (or 11) yields a differential
equation for θ . If this procedure leads to smooth and non-
negative pressures and density for the fluid, then they can
be regarded as the physical solutions. However, knowing the
function�, Eq. (7) (or 11) is a non-linear differential equation
which in general one does not expect to obtain an analytical
solution. Here we introduce a heuristic approach to get some
analytical solutions. In order to do this, we assume that the
anisotropy factor has no influence on the form of isotropic
Lane–Emden equation. This means that � modifies only the
coefficients of isotropic Lane–Emden equation. Hereafter,
we adopt the minus sign on the right-hand side of Lane–
Emden equation (7) (or 11), since the plus sign leads to an
imaginary radial coordinate [2]. In the following we shall
consider two cases.

Case 1 � modifies the coefficient of θ ′ in the isotropic Lane–
Emden equation. In this case Eq. (7) can be considered as two
separated equations as below

−2

P0(n + 1)θn

[
�′ + N − 2

ξ
� − n

θ ′

θ
�

]
= N1θ

′ (15)

θ ′′ + N1 + N − 1

ξ
θ ′ = −θn (16)

where N1 is an arbitrary constant. Equation (15) is a first
order differential equation with the solution

�(ξ) = − (n + 1)P0N1θ
n

2ξ N−2

∫
θ ′ξ N−2dξ. (17)

Equations (16) and (17) with the boundary conditions (13)
and θ(0) = 1 give the solutions of anisotropic polytropes.

Case 2 � modifies the coefficient of θn in the right-hand
side of the isotropic Lane–Emden equation,

−2

P0(n + 1)θnξ

[
�′ + N − 2

ξ
� − n

θ ′

θ
�

]
= N2θ

n (18)

d2θ

dη2 + N − 1

η

dθ

dη
= −θn (19)

where η = √
(N2 + 1) ξ , N2 > −1. The solution of Eq.

(18) is

�(ξ) = −(n + 1)P0N2θ
n

2(N2 + 1)ξ N−2

∫
θnξ N−1dξ. (20)

Now let us to interpret physically Eq. (7). The quantities of
physical interest, for definite values of the polytropic index,
are the stellar radius and mass. These are

R =
(
K (n + 1)

4πG

) 1
2

ρ
1−n
2n

0 ξ1, (21)

M =
∫

0

R

4πr2ρdr = 4π

(
K (n + 1)

4πG

) 3
2

ρ0

∫
0

ξ1

θnξ2dξ

(22)

where ξ1 is the first root of θ function and thus this point
defines the surface of the star. Using the anisotropic Lane–
Emden equation (7), we get

M = −4π

(
K (n + 1)

4πG

) 3
2

ρ0

∫
0

ξ1 d

dξ

×
(

ξ2 dθ

dξ
− 2

P0(n + 1)
�ξθ−n

)
dξ, (23)

which with the boundary conditions θ0 = 1, Eq. (13), and
the definition of surface ξ1 gives

M = 4π

(
K (n + 1)

4πG

) 3
2

ρ0

∣∣∣∣ξ2 dθ

dξ

∣∣∣∣
ξ1

. (24)

This has the well-known form of the mass relation for
isotropic star. Eliminating the central mass density between
(21) and (24) we have
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Fig. 1 Plot of M
M
 as a function of R

R
 in the Case 1, for n = 3
2

with N1 = −1.5 (dotted line), N1 = 0 (thin line, the isotropic case),
N1 = 0.5 (dashed line), N1 = 1.5 (thick line), and N1 = 2.5 (dot-
dashed line)

Fig. 2 Plot of M
M
 as a function of R

R
 in the Case 2, for n = 3
2

with N2 = −0.8 (dotted line), N2 = 0 (thin line, the isotropic case),
N2 = 0.5 (dashed line), N2 = 1.5 (thick line), and N2 = 2.5 (dot-
dashed line)

MR
3−n
n−1 = 4π

(
K (n + 1)

4πG

) n
n−1

ξ1
n+1
n−1

∣∣∣∣dθ

dξ

∣∣∣∣
ξ1

; (25)

knowing the polytropic index,
∣∣∣ dθ

dξ

∣∣∣
ξ1

can be obtained from

(16) or (19) numerically and thus the constant on the right-
hand side of Eq. (25) is found. Therefore the anisotropy factor
does not appear explicitly in the mass or the mass–radius
relation of a star. The effect of anisotropy is included in the
θ function through its equation (parameter N1 in (16) and
variable η in (19)). Figures 1 and 2 show the mass–radius
diagrams for low density white dwarfs with n = 3

2 obtained
from Eqs. (16) and (19), respectively.

The influence of anisotropy on the mass ratio for a fix star
radius is numerically plotted in Figs. 3 and 4. Note that in
the Case 1 the parameter N1 scales the anisotropy, while for
the Case 2, the parameter N2 plays that role.

Fig. 3 Plot of M
M
 as a function of N1 in the Case 1, for n = 3

2 and
R
R
 = 10

Fig. 4 Plot of M
M
 as a function of N2 in the Case 2, for n = 3

2 and
R
R
 = 10

3 Exact analytical solutions of anisotropic Lane–Emden
equation

3.1 Case I

3.1.1 n = 0

With n = 0, the density is constant, ρ = ρ0, and Eq. (16)
takes the following form:

θ ′′ + S − 1

ξ
θ ′ + 1 = 0, (26)

in which S = N1 + N , where solution is

θ =
{

− ξ2

2S + 1, S > 1,

− ξ2

2S + A ξ2−S

2−S + 1, S ≤ 1, S �= 0,
(27)

in which A is a constant. In the above solution we have also
implemented the boundary condition θ(0) = 1 and only
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Fig. 5 Plot of � for S > 1 in three dimensions with S = 4 (thick line),
S = 5 (dotted line), S = 6 (dashed line), S = 7 (dot-dashed line)

those terms that lead to the non-singular solutions have been
written.

We can now read � from (17) considering the boundary
condition (13):

� =

⎧⎪⎨
⎪⎩

(S−N )P0
2SN ξ2 S > 1,

− (S−N )P0
2

(
− ξ2

NS + A
N−S ξ2−S

)
S ≤ 1, S �= 0, S �= N

0 N = S = 1.

(28)

We see that, to satisfy the boundary conditions, we have to
have �(0) = 0. The resulting � function is plotted in Fig. 5.

Also the radial and tangential pressures are determined
from the expressions (6), (27), and (28).

3.1.2 n = 1

In this case, the differential equation (16) reduces to

θ ′′ + (S − 1)

ξ2 θ ′ + θ = 0. (29)

The solutions of (29) are given in terms of Bessel functions
as follows:

θ(ξ) = ξ− S−2
2

[
C1 J S−2

2
(ξ) + C2Y S−2

2
(ξ)

]
(30)

where C1 and C2 are integration constants. Imposing the
condition θ(0) = 1, C2 vanishes and we get

θ(ξ) = �

(
S

2

)(
ξ

2

)− S−2
2

J S−2
2

(ξ), S > 2, (31)

in which the constant C1 is expressed in terms of the Gamma
function, �

( S
2

)
. Substituting (31) into (17) leads to

Fig. 6 Plot of � for n = 1 in three dimensions with S = 4 (thick line),
S = 5 (dotted line), S = 6 (dashed line), S = 7 (dot-dashed line)

�(ξ) = 2
S
2

8
(S − N )P0ξ

3− s
2 J S−2

2
(ξ)�2

(
S

2

)
�

(
N

2

)
F

×
(
N

2
; 1 + S

2
, 1 + N

2
;−ξ2

4

)
(32)

where F(a, b, c, x) is the hypergeometric function. These
results also satisfy the boundary condition (13) with θ ′(0) =
�(0) = 0. The function (32) is depicted in Fig. 6.

3.1.3 n = S+2
S−2

In this case, if one takes

θ(ξ) =
(

4

(n − 1)2

)n−1

ξ
2

1−n z(ξ), ξ = e−t , (33)

then Eq. (16) reduces to

d2z

dt2 = 4
z ∓ zn

(n − 1)2 . (34)

The above equation can be integrated as follows:

1

2

(
dz

dt

)2

= 4

(n − 1)2

[
z2

2
∓ zn+1

n + 1

]
+ C. (35)

Considering n > 1 (S > 2), turning back to the original
variables and using Eqs. (33) and (35), a simple calculation
shows that the initial conditions on θ leads to z = 0 and
dz/dt = 0 at ξ = 0. This gives C = 0. Writing the above
equation in terms of the original variables, we have

2θθ ′

n − 1
+ ξ

θ ′2

2
+ ξ

θn+1

n + 1
= 0. (36)

We proceed with integrating the above equation

ξ
θ

n+1
2

θ ′ = D. (37)
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Fig. 7 Plot of � for n = S+2
S−2 in three dimensions with S = 4 (thick

line), S = 5 (dotted line), S = 6 (dashed line), S = 7 (dot-dashed line)

The constant D might be determined taking into account (13)
and θ(0) = 1

1

D
= lim

ξ→0
θ− S

S−2
θ ′

ξ
= − 1

N
+ 2

P0(n + 1)
lim
ξ→0

�(ξ)

ξ2 . (38)

As we see, the constant D depends on the � function near
the origin. The differential equation (37) has the following
solution:

θ =
[

1 − ξ2

D(S − 2)

]− S−2
2

. (39)

Employing (17), we get the following expression for the dif-
ference between the radial and tangential pressures:

�(ξ) = − SP0(S − N )

ND(S − 2)
ξ2

[
1 − ξ2

D(S − 2)

]− S+2
2

×F

(
N

2
,
S

2
, 1 + N

2
,

ξ2

D(S − 2)

)
(40)

Now, we are in the position to fix the constant D. Combining
(38) and (40), one gets D = −S. The resulting � is shown
in Fig. 7.

3.2 Case II

3.2.1 n = 0

The solutions of differential equations (19) and (20) satisfy-
ing the boundary conditions are

θ =
{− N2+1

2N ξ2 + A
√
N2 + 1ξ + 1, N = 1,

− N2+1
2N ξ2 + 1, N > 1,

(41)

� =
{− P0N2

2(N2+1)N ξ2, N ≥ 2,

− P0N2
2(N2+1)

(ξ2 −
√

(N2+1)3

N2
Aξ), N = 1.

(42)

Fig. 8 Plot of � for n = 0 in three dimensions with N2 = 1 (thick
line), N2 = 2 (dotted line), N2 = 3 (dashed line), N2 = 4 (dot-dashed
line)

Fig. 9 Plot of � for n = 1 in three dimensions with N2 = 1 (thick
line), N2 = 2 (dotted line), N2 = 3 (dashed line), N2 = 4 (dot-dashed
line)

The behavior of � is shown in Fig. 8.

3.2.2 n = 1

The situation for this case is also similar to the previous one
and the substitution of S and ξ by N and η in (31) pro-
duces the solution of (19) with n = 1. This outcome with the
integration (20) gives the differences between the radial and
tangential pressures:

�(ξ) = −2N−2 P0N2

(N2 + 1)
1
2 (N+1)

�2
(
N

2

)
ξ3−N J N−2

2

×(
√
N2 + 1ξ)J N

2
(
√
N2 + 1ξ), (43)

which are depicted in Fig. 9.

3.2.3 n = N+2
N−2

Similar to the two former cases, in this situation the solution
to the (19) with n = N+2

N−2 might be obtained by changing S
and ξ to N and η in (39),
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Fig. 10 Plot of � for n = N+2
N−2 in three dimensions with N2 = 1 (thick

line), N2 = 2 (dotted line), N2 = 3 (dashed line), N2 = 4 (dot-dashed
line)

θ =
[

1 − N2 + 1

D(N − 2)
ξ2

]− N−2
2

, N > 2. (44)

Putting the above result in (20) gives

� = − N P0N2

(N2 + 1)(N−2)N

[
1− 1+N2

D(N − 2)
ξ2

]−(N+1)

ξ2.

(45)

Combining (38) and (45), one gets D = − N (N2+1)
2N2−1 . The

graph of (45) is plotted in Fig. 10 for various values of N2.

4 Integral theorems

Chandrasekhar in his famous book [1] has discussed some
inequalities for the physical quantities describing a star in the
Newtonian gravitational equilibrium. In this section we will
extend some of his results for anisotropic stars. The results
are general and are not restricted to the polytropic case.

Let m(r) be the mass contained inside the radius r , then

m′ = 4πρr2. (46)

Equation (1) can now be written as

P ′
r = −Gmρ

r2 + 2�

r
(47)

where we have used the definition of gravitational potential.
From (46) and (47) one can get the following equation:

1

r2

[
r2

ρ

(
P ′

r − 2�

r

)]′
= −4πGρ. (48)

These equations can be used to prove the following theorems.

Theorem 3 For any equilibrium configuration the function

I = Pr + Gm2

8πr4 − 2
∫ r

0
dr̃

�

r̃
(49)

does not increase outward.

Proof Let us calculate

I ′ = P ′
r + Gmm′

4πr4 − Gm2

2πr5
− 2�

r
. (50)

Then by (47)

I ′ = − Gm2

2πr5
≤ 0. (51)

��
Corollary 1 For the central pressure, we have

P0 > Pr + Gm2

8πr4 − 2
∫ r

0
dr̃

�

r̃
>

Gm2

8πR4 − 2
∫ R

0
dr̃

�

r̃
,

(52)

in which M = m(R) is the mass of the star. The last term in
the right-hand side shows a lower bound on P0. Moreover,
for any arbitrary radius, the above relation leads to

Pr >
G

8π

(
M2

R4 − m2

r4

)
− 2

∫ R

r
dr̃

�

r̃
. (53)

Theorem 4 For any equilibrium configuration

Iν ≡
∫ R

0
dm

Gm

r̃ν
= 4π

∫ R

0
dr̃ r̃3−ν[(4 − ν)Pr + 2�] (54)

if ν < 4.

Proof From (47) we have

Gmm′

4πr4 = 2�

r
− P ′

r . (55)

Multiplying this by r4−ν and then integrating from r to R
gives

Iν = 8π

∫ R

0
dr̃ r̃ν−3� − 4π

∫ R

0
dPrr̃

4−ν. (56)

Integrating by parts the first integral, leads to (54). ��
For ν = 4, Eq. (56) gives

I4 = 8π

∫ R

0
dr̃

�

r̃
+ 4π P0, (57)

which also has a lower bound equal to Gm2

2R4 according to (52).
The gravitational potential energy � of the configuration

is −I1. According to (56) it is given by

� = −
∫ R

0
dV (3Pr + 2�). (58)

Denoting the mean value of gravitational acceleration by ḡ,
we have

Mḡ =
∫ R

0
dm

Gm

r2 = I2 (59)

and hence by (56)

Mḡ = 8π

∫ R

0
dr̃ r̃ (Pr + �) = 8π

∫ R

0
dr̃ r̃ Pt. (60)
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This shows that for an anisotropic star only the tangential
pressure contributes to finding the mean value of accelera-
tion.

Theorem 5 For any equilibrium configuration

πνP0R
4−ν + (4 − ν)Gm2

8Rν

+2πν(4 − ν)

∫ R

0
dr̃ r̃3−ν

∫ R

0
dr̃

�

r̃

> 2πν

∫ R

0
dr̃

�

r̃ν−3 + Iν >
Gm2

2Rν
. (61)

Proof By Theorem 3

Gm2

8πR4 − Gm2

8πr4 − 2
∫ R

0
dr̃

�

r̃
+ 2

∫ r

0
dr̃

�

r̃
< Pr < P0

− Gm2

8πr4 + 2
∫ r

0
dr̃

�

r̃
(62)

and by Theorem 4

4π(4 − ν)

∫ R

0
dr̃ r̃3−ν

[
Gm2

8πR4 − Gm2

8πr4 − 2
∫ R

0
dr̃

�

r̃

+2
∫ r

0
dr̃

�

r̃

]

< Iν + 8π

∫ R

0
dr̃ r̃3−ν� < 4π(4 − ν)

∫ R

0
dr̃ r̃3−ν

×
[
P0 − Gm2

8πr4 + 2
∫ r

0
dr̃

�

r̃

]
. (63)

This inequality can be written as

4π P0R
4−ν + 8πν(4 − ν)

∫ R

0
dr̃ r̃3−ν

∫ r

0
dr̃

�

r̃

> Iν + 8π

∫ R

0
dr̃ r̃3−ν� + (4 − ν)

2

∫ R

0
dr̃

Gm2

r̃ν+1

>
Gm2

2Rν
. (64)

Inserting∫ R

0
dr̃

Gm2

r̃ν+1 = Gm2

Rν
− 2Iν (65)

in (64) and simplifying it, we get (61). ��
Corollary 2 Setting ν = 1, we have(

π P0R
3 + 3Gm2

8R
+ 6π

∫ R

0
dr̃r̃2

∫ r

0
dr̃

�

r̃

)

> 2π

∫ R

0
dr̃r̃2� − � >

Gm2

2R
, (66)

which shows the upper and lower bounds of the potential
energy, −�.

5 Concluding remarks

In this paper we discussed how the anisotropy factor modi-
fies the Lane–Emden equation and homology theorem. We
obtained some theorems governing the characteristic func-
tions of anisotropic star. These are the extension of Chan-
drasekhar’s theorems. We performed a procedure to find the
anisotropy factor, the radial pressure and the density func-
tions exactly satisfying the Lane–Emden equation. We had
two cases. In the first case the effect of anisotropy is to change
the dimension of space from N to N + N1 (which may be a
non-integer number). For the second case, anisotropy shows
itself as a rescaling of the radial coordinate in the function θ .

Moreover, it is straightforward to find some approximate
analytical solutions of the polytropic stars with anisotropic
pressure. For example, let us assume that the including
anisotropy factor is equivalent to a slight modification of the
polytropic index from its value in the absence of anisotropy,
n0. This means that if an exact solution θ0 of the isotropic
Lane–Emden equation is known:

θ ′′
0 + N − 1

ξ
θ ′

0 = −θ
n0
0 . (67)

Inclusion of the anisotropy factor leads to

θ ′′ + N − 1

ξ
θ ′ − 2

P0(n0 + 1)ξθn0

×
[
�′ + 1

ξ
� − n0

θ ′

θ
�

]
= −θn0 , (68)

which is equivalent to perturbing θ0 and n0 in Eq. (67) in
such a way that θ = θ0 + εθ∗ and n = n0 + ε satisfy (67)

θ ′′ + N − 1

ξ
θ ′ = −θn, (69)

where |ε| � 1. Thus we have the following equation for θ∗
and �:

θ ′′∗ + N − 1

ξ
θ ′∗ = −θ

n0
0

(
ln θ0 + n0θ∗

θ0

)
, (70)

2

P0(n0 + 1)ξθn0

[
�′ + 1

ξ
� − n0

θ ′

θ
�

]
= −θn + θn0 .

(71)

Expanding the right-hand side of (71) and assuming � =
ε�∗, the following equation for �∗ is obtained:

2

P0(n0 + 1)ξθ
n0
0

[
�′∗ + 1

ξ
�∗ − n0

θ ′
0

θ0
�∗

]

= −θ
n0
0 (ln θ0 + n0θ∗

θ0
). (72)

Having n0, the functions θ0 and thus θ∗ can be determined
from (67) and (70) and then �∗ is obtained from (72). With
the initial conditions θ0(0) = 1, θ ′

0(0) = θ∗(0) = θ ′∗(0) = 0
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Fig. 11 Plot of � for the analytical solution close to the exact solution
(n0 = 0, N = 3) as explained in the text

Fig. 12 Plot of � for the numerical solution close to the exact solution
(n0 = 1, N = 3) as explained in the text

and for the case n0 = 0 and N = 3, we get θ0 = 1 − ξ2/6.
Inserting θ0 into (69), we find that [14]

θ∗ = (3 − ξ2

6
) ln (1 − ξ2

6
) + 2

√
6

ξ
ln

√
6 + ξ√
6 − ξ

+ 5

18
ξ2 − 4

(73)

where ξ ≤ √
6. Thus:

� = − P0ε

2

[
ξ2

9
[3 ln (1 − ξ2

6
) − 2]

+4
√

6

ξ
arctan

ξ√
6

− 4

]
. (74)

The plot of � is shown in Fig. 11.
One can find other solutions of (67), (70), and (72) numer-

ically for arbitrary values of the barotropic index. For exam-
ple, for n0 = 1, the graph of � is plotted in Fig. 12.
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