139 research outputs found

    Pair of accelerated black holes in an anti-de Sitter background: the AdS C-metric

    Full text link
    The anti-de Sitter C-metric (AdS C-metric) is characterized by a quite interesting new feature when compared with the C-metric in flat or de Sitter backgrounds. Indeed, contrarily to what happens in these two last exact solutions, the AdS C-metric only describes a pair of accelerated black holes if the acceleration parameter satisfies A>1/L, where L is the cosmological length. The two black holes cannot interact gravitationally and their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our analysis is based on the study of the causal structure, on the description of the solution in the AdS 4-hyperboloid in a 5D Minkowski embedding spacetime, and on the physics of the strut. We also analyze the cases A=1/L and A<1/L that represent a single accelerated black hole in the AdS background.Comment: 20 pages, 15 figures (RevTeX4). Published version: typo in fig. 5 corrected, references adde

    Effect of temperature, time, and asparaginase on acrylamide formation and physicochemical properties of bread

    Get PDF
    The aim of the current paper was to elucidate the influence of temperature and time on acrylamide formation and physico-chemical characteristics of bread. Additionally, the effect of asparaginase addition to bran was evaluated. With increasing baking time and temperature, the amount of acrylamide (µg kg−1) increased. The results indicated that the acrylamide concentration in treated samples with asparaginase was significantly less than those without asparaginase treatment. Based on Pearson’ test, it was found that there was a significant correlation between baking temperature and acrylamide concentration (R=0.99, P=0.025; and R=0.98, P=0.026 for the samples prepared by baking for 2.5 min and 3 min, respectively). The firmness of bread samples increased with increasing baking temperature (P>0.05), while asparaginase addition did not significant affect the textural characteristics of the final product. Breads baked at 320 °C for 3 min were more acceptable by the sensory panel in terms of their texture and chewiness, whereas the samples baked at 370 °C for 2.5 min had the lowest score in comparison to other evaluated samples

    A new form of the rotating C-metric

    Full text link
    In a previous paper, we showed that the traditional form of the charged C-metric can be transformed, by a change of coordinates, into one with an explicitly factorizable structure function. This new form of the C-metric has the advantage that its properties become much simpler to analyze. In this paper, we propose an analogous new form for the rotating charged C-metric, with structure function G(\xi)=(1-\xi^2)(1+r_{+}A\xi)(1+r_{-}A\xi), where r_\pm are the usual locations of the horizons in the Kerr-Newman black hole. Unlike the non-rotating case, this new form is not related to the traditional one by a coordinate transformation. We show that the physical distinction between these two forms of the rotating C-metric lies in the nature of the conical singularities causing the black holes to accelerate apart: the new form is free of torsion singularities and therefore does not contain any closed timelike curves. We claim that this new form should be considered the natural generalization of the C-metric with rotation.Comment: 13 pages, LaTe

    Boost-rotation symmetric type D radiative metrics in Bondi coordinates

    Get PDF
    The asymptotic properties of the solutions to the Einstein-Maxwell equations with boost-rotation symmetry and Petrov type D are studied. We find series solutions to the pertinent set of equations which are suitable for a late time descriptions in coordinates which are well adapted for the description of the radiative properties of spacetimes (Bondi coordinates). By calculating the total charge, Bondi and NUT mass and the Newman-Penrose constants of the spacetimes we provide a physical interpretation of the free parameters of the solutions. Additional relevant aspects on the asymptotics and radiative properties of the spacetimes considered, such as the possible polarization states of the gravitational and electromagnetic field, are discussed through the way

    Radiation from accelerated black holes in an anti-de Sitter universe

    Full text link
    We study gravitational and electromagnetic radiation generated by uniformly accelerated charged black holes in anti-de Sitter spacetime. This is described by the C-metric exact solution of the Einstein-Maxwell equations with a negative cosmological constant Lambda. We explicitly find and interpret the pattern of radiation that characterizes the dependence of the fields on a null direction from which the (timelike) conformal infinity is approached. This directional pattern exhibits specific properties which are more complicated if compared with recent analogous results obtained for asymptotic behavior of fields near a de Sitter-like infinity. In particular, for large acceleration the anti-de Sitter-like infinity is divided by Killing horizons into several distinct domains with a different structure of principal null directions, in which the patterns of radiation differ.Comment: 19 pages, 11 colour figures, submitted to Phys. Rev. D [Low quality figures are included in this version because of arXive size restrictions. The version with the standard quality figures is available at http://utf.mff.cuni.cz/~podolsky/jppubl.htm.
    corecore