7 research outputs found

    Quantifying the benefits of wetland restoration under projected sea level rise

    Get PDF
    The capacity of vegetated coastal habitats to mitigate erosion and build elevation in response to sea-level rise (SLR) has led to growing interest in their application as Nature Based Solutions (NBS) for shoreline protection. However, a significant uncertainty in the performance of NBS is how these features will respond to future rates of SLR. In this study, we applied the Sea Level Affecting Marshes Model (SLAMM) to a fringing shoreline wetland complex that is directly adjacent to the primary runway of a regional airport in coastal North Carolina, US. The SLAMM model was run at high spatial resolution (1 m cell size) to investigate the effects of projected SLR by 2100 on the wetland communities and to estimate the potential benefits of a proposed NBS project involving the use of dredged sediment to increase wetland surface elevation. Modeling future habitat extent under three SLR scenarios (i.e., intermediate, intermediate-high, and high) with no land modification reveals a consistent pattern of salt marsh expanding into fresh marsh, salt marsh transitioning to higher elevations, and substantially larger overall extents of intertidal and subtidal habitats within the project footprint at relatively high rates of SLR. Simulations that include the NBS indicate changes in the composition of wetland types over time compared with the no-action scenario. Model results help to better understand the long-term behavior of fringing coastal wetlands and the efficacy of their use as part of coastal resilience strategies

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio
    corecore