389 research outputs found

    Hidden entanglement in the presence of random telegraph dephasing noise

    Full text link
    Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.Comment: 8 pages, 1 figure, submitted to Physica Scripta on September 17th 201

    Entanglement degradation in the solid state: interplay of adiabatic and quantum noise

    Get PDF
    We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.Comment: Replaced with published version. Minor change

    Hidden entanglement, system-environment information flow and non-Markovianity

    Full text link
    It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.Comment: 9 pages, 2 figures; proceedings of the conference IQIS 2013, September 24-26 2013, Como, Ital

    Effects of low-frequency noise cross-correlations in coupled superconducting qubits

    Full text link
    We study the effects of correlated low frequency noise sources acting on a two qubit gate in a fixed coupling scheme. A phenomenological model for the spatial and cross-talk correlations is introduced. The decoherence inside the SWAP subspace is analysed by combining analytic results based on the adiabatic approximation and numerical simulations. Results critically depend on amplitude of the low frequency noise with respect to the qubits coupling strength. Correlations between noise sources induce qualitative different behaviors depending on the values of the above parameters. The possibility to reduce dephasing due to correlated low frequency noise by a recalibration protocol is discussed.Comment: 18 pages, 7 figure

    Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling

    Get PDF
    In this paper, we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, such as 1/f noise, using dynamical decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows us to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and 1/f noise. We investigate the efficiency of an \u201centanglement memory\u201d element under two-pulse echo and under sequences of periodic, Carr-Purcell, and Uhrig dynamical decoupling. The Carr-Purcell sequence is shown to outperform the other sequences in preserving entanglement against both random telegraph and 1/f noise. For typical 1/f flux-noise figures in superconducting nanocircuits, we show that entanglement and its nonlocal features can be efficiently stored up to times one order of magnitude longer than natural entanglement disappearance times employing pulse timings of current experimental reach

    Superconducting spin filter

    Full text link
    Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the superconductor are grounded. In general, a finite current I2(V1,0)I_2(V_1,0) is induced in the grounded lead 2; its magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission from the lead 1 to the lead 2. It is known that in the tunneling limit, when normal leads are weakly coupled to the superconductor, I2(V1,0)=0I_2(V_1,0)=0, if V1<Δ|V_1|<\Delta and the system is in the clean limit. In other words, Andreev and normal tunneling processes compensate each-other. We consider the general case: the voltages are below the gap, the system is either dirty or clean. It is shown that I2(V1,0)=0I_2(V_1,0)=0 for general configuration of the normal leads; if the first lead injects spin polarized current then I2=0I_2=0, but spin current in the lead-2 is finite. XISIN structure, where X is a source of the spin polarized current could be applied as a filter separating spin current from charge current. We do an analytical progress calculating I1(V1,V2),I2(V1,V2)I_1(V_1,V_2), I_2(V_1,V_2).Comment: 5 pages, references adde

    Relation between Barrier Conductance and Coulomb Blockade Peak Splitting for Tunnel-Coupled Quantum Dots

    Full text link
    We study the relation between the barrier conductance and the Coulomb blockade peak splitting for two electrostatically equivalent dots connected by tunneling channels with bandwidths much larger than the dot charging energies. We note that this problem is equivalent to a well-known single-dot problem and present solutions for the relation between peak splitting and barrier conductance in both the weak and strong coupling limits. Results are in good qualitative agreement with the experimental findings of F. R. Waugh et al.Comment: 19 pages (REVTeX 3.0), 3 Postscript figure

    Enhancement of Josephson phase diffusion by microwaves

    Full text link
    We report an experimental and theoretical study of the phase diffusion in small Josephson junctions under microwave irradiation. A peculiar enhancement of the phase diffusion by microwaves is observed. The enhancement manifests itself by a pronounced current peak in the current-voltage characteristics. The voltage position VtopV_{\rm top} of the peak increases with the power PP of microwave radiation as VtopPV_{\rm top}\propto\sqrt P, while its current amplitude weakly decreases with PP. As the microwave frequency increases, the peak feature evolves into Shapiro steps with finite slope. Our theoretical analysis taking into account the enhancement of incoherent superconducting current by multi-photon absorption is in good agreement with experimental data.Comment: 5 pages, 4 figure

    Thermodynamics of quantum dissipative many-body systems

    Full text link
    We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and dissipative quadratic forms. The underlying scheme is the pure-quantum self-consistent harmonic approximation (PQSCHA), equivalent to the variational approach by the Feynman-Jensen inequality with a suitable quadratic nonlocal trial action. A low-coupling approximation permits to get manageable PQSCHA expressions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipation. The application of the PQSCHA to a quantum phi4-chain with Drude-like dissipation shows nontrivial effects of dissipation, depending upon its strength and bandwidth.Comment: ReVTeX, 12 pages, 9 embedded figures (vers.2: typo mistake fixed
    corecore