7,704 research outputs found

    Longitudinal and transversal spin dynamics of donor-bound electrons in fluorine-doped ZnSe: spin inertia versus Hanle effect

    Get PDF
    The spin dynamics of the strongly localized, donor-bound electrons in fluorine-doped ZnSe epilayers is studied by pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time, T1T_1, in a wide range of magnetic fields, temperatures, and pump densities. The T1T_1 time of the donor-bound electron spin of about 1.6 μ\mus remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8−451.8-45 K. The inhomogeneous spin dephasing time, T2∗=8−33T_2^*=8-33 ns, is measured using the resonant spin amplification and Hanle effects under pulsed and steady-state pumping, respectively. These findings impose severe restrictions on possible spin relaxation mechanisms.Comment: 10 pages, 7 figure

    Two-electron state in a disordered 2D island: pairing caused by the Coulomb repulsion

    Full text link
    We show the existence of bound two-electron states in an almost depleted two-dimensional island. These two-electron states are carried by special compact configurations of four single-electron levels. The existence of these states does not require phonon mediation, and is facilitated by the disorder-induced potential relief and by the electron-electron repulsion only. The density of two-electron states is estimated and their evolution with the magnetic field is discussed.Comment: 9 pages, 1 fi

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Get PDF
    Optically-induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically-induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.Comment: 12 pages, 11 figure

    Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions

    Get PDF
    Momentum distributions of particles from nuclear break-up of fast three-body halos are calculated consistently, and applied to 11^{11}Li. The same two-body interactions between the three particles are used to calculate the ground state structure and the final state of the reaction processes. We reproduce the available momentum distributions from 11^{11}Li fragmentation, together with the size and energy of 11^{11}Li, with a neutron-core relative state containing a pp-state admixture of 20\%-30\%. The available fragmentation data strongly suggest an ss-state in 10^{10}Li at about 50 keV, and indicate a pp-state around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file attached at the end of the LaTeX file). To be published in Phys. Rev.

    Characteristic features of the temperature dependence of the surface impedance in polycrystalline MgB2_2 samples

    Full text link
    The real Rs(T)R_s(T) and imaginary Xs(T)X_s(T) parts of the surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) in polycrystalline MgB2_2 samples of different density with the critical temperature Tc≈38T_c\approx 38 K are measured at the frequency of 9.4 GHz and in the temperature range 5≤T<2005\le T<200 K. The normal skin-effect condition Rs(T)=Xs(T)R_s(T)=X_s(T) at T≥TcT\ge T_c holds only for the samples of the highest density with roughness sizes not more than 0.1 μ\mum. For such samples extrapolation T→0T\to 0 of the linear at T<Tc/2T<T_c/2 temperature dependences λL(T)=Xs(T)/ωμ0\lambda_L(T)=X_s(T)/\omega\mu_0 and Rs(T)R_s(T) results in values of the London penetration depth λL(0)≈600\lambda_L(0)\approx 600 \AA and residual surface resistance Rres≈0.8R_{res}\approx 0.8 mΩ\Omega. In the entire temperature range the dependences Rs(T)R_s(T) and Xs(T)X_s(T) are well described by the modified two-fluid model.Comment: 7 pages, 3 figures. Europhysics Letters, accepted for publicatio

    Critical Fields and Critical Currents in MgB2

    Full text link
    We review recent measurements of upper (Hc2) and lower (Hc1) critical fields in clean single crystals of MgB2, and their anisotropies between the two principal crystallographic directions. Such crystals are far into the "clean limit" of Type II superconductivity, and indeed for fields applied in the c-direction, the Ginzburg-Landau parameter k is only about 3, just large enough for Type II behaviour. Because m0Hc2 is so low, about 3 T for fields in the c-direction, MgB2 has to be modified for it to become useful for high-current applications. It should be possible to increase Hc2 by the introduction of strong electron scattering (but because of the electronic structure and the double gap that results, the scatterers will have to be chosen carefully). In addition, pinning defects on a scale of a few nm will have to be engineered in order to enhance the critical current density at high fields.Comment: BOROMAG Conference Invited paper. To appear in Supercond. Sci. Tec

    Sensitivities of the Proton-Nucleus Elastical Scattering Observables of 6He and 8He at Intermediate Energies

    Get PDF
    We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Therefore researchers should look elsewhere to put constraints on the ground state wave function of the 6He and 8He nuclei.Comment: To be published in Phys. Rev.

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur

    Orthogonal localized wave functions of an electron in a magnetic field

    Full text link
    We prove the existence of a set of two-scale magnetic Wannier orbitals w_{m,n}(r) on the infinite plane. The quantum numbers of these states are the positions {m,n} of their centers which form a von Neumann lattice. Function w_{00}localized at the origin has a nearly Gaussian shape of exp(-r^2/4l^2)/sqrt(2Pi) for r < sqrt(2Pi)l,where l is the magnetic length. This region makes a dominating contribution to the normalization integral. Outside this region function, w_{00}(r) is small, oscillates, and falls off with the Thouless critical exponent for magnetic orbitals, r^(-2). These functions form a convenient basis for many electron problems.Comment: RevTex, 18 pages, 5 ps fi
    • …
    corecore