6,400 research outputs found

    Creep of plasma sprayed zirconia

    Get PDF
    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding

    The Subcolonization and Buildup of \u3ci\u3eTetrastichus Julis,\u3c/i\u3e (Hymenoptera: Eulophidae) a Larval Parasitoid of the Cereal Leaf Beetle, (Coleoptera: Chrysomelidae) in the Lower Peninsula of Michigan

    Get PDF
    Following initial establishment of the parasitoid, Tetrastichus julis (Walker), at a carefully managed field nursery, releases of parasitized Oulema melanopus larvae were made by Michigan county agents at preselected sites throughout the lower peninsula during 1970-74. A follow-up recovery program during 1971-75 revealed continued dispersion and population increase for T. julis. An independent census verified the increasing rates of parasitism

    Effect of laser frequency noise on fiber-optic frequency reference distribution

    Get PDF
    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance

    Microwave analog fiber-optic link for use in the deep space network

    Get PDF
    A novel fiber-optic system with dynamic range of up to 150 dB-Hz for transmission of microwave analog signals is described. The design, analysis, and laboratory evaluations of this system are reported, and potential applications in the NASA/JPL Deep Space Network are discussed

    Design of a fiber-optic transmitter for microwave analog transmission with high phase stability

    Get PDF
    The principal considerations in the design of fiber-optic transmitters for highly phase-stable radio frequency and microwave analog transmission are discussed. Criteria for a fiber-optic transmitter design with improved amplitude and phase-noise performance are developed through consideration of factors affecting the phase noise, including low-frequency laser-bias supply noise, the magnitude and proximity of external reflections into the laser, and temperature excursions of the laser-transmitter package

    Single-particle dynamics of the Anderson model: a local moment approach

    Full text link
    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valent and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.Comment: 26 pages, 9 figure

    Dynamics and transport properties of heavy fermions: theory

    Full text link
    The paramagnetic phase of heavy fermion systems is investigated, using a non-perturbative local moment approach to the asymmetric periodic Anderson model within the framework of dynamical mean field theory. The natural focus is on the strong coupling Kondo-lattice regime wherein single-particle spectra, scattering rates, dc transport and optics are found to exhibit w/w_L,T/w_L scaling in terms of a single underlying low-energy coherence scale w_L. Dynamics/transport on all relevant (w,T)-scales are encompassed, from the low-energy behaviour characteristic of the lattice coherent Fermi liquid, through incoherent effective single-impurity physics likewise found to arise in the universal scaling regime, to non-universal high-energy scales; and which description in turn enables viable quantitative comparison to experiment.Comment: 27 pages, 12 figure

    Mott-Hubbard transition in infinite dimensions

    Full text link
    We calculate the zero-temperature gap and quasiparticle weight of the half-filled Hubbard model with a random dispersion relation. After extrapolation to the thermodynamic limit, we obtain reliable bounds on these quantities for the Hubbard model in infinite dimensions. Our data indicate that the Mott-Hubbard transition is continuous, i.e., that the quasiparticle weight becomes zero at the same critical interaction strength at which the gap opens.Comment: 4 pages, RevTeX, 5 figures included with epsfig Final version for PRL, includes L=14 dat
    • …
    corecore