5,870 research outputs found

    Finite Width Effects and Gauge Invariance in Radiative WW Production and Decay

    Full text link
    The naive implementation of finite width effects in processes involving unstable particles can violate gauge invariance. For the example of radiative WW production and decay, qqˉνγq\bar q' \to \ell\nu\gamma, at tree level, it is demonstrated how gauge invariance is restored by including the imaginary part of triangle graphs in addition to resumming the imaginary contributions to the WW vacuum polarization. Monte Carlo results are presented for the Fermilab Tevatron.Comment: 10 pages, Revtex, 3 figures submitted separately as uuencoded tarred postscript files, the complete paper is available at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-878.ps.Z or http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-878.ps.

    Vector Boson Pair Production in Hadronic Collisions at Order αs\alpha_s: Lepton Correlations and Anomalous Couplings

    Full text link
    We present cross sections for production of electroweak vector boson pairs, WWWW, WZWZ and ZZZZ, in ppˉp\bar{p} and pppp collisions, at next-to-leading order in αs\alpha_s. We treat the leptonic decays of the bosons in the narrow-width approximation, but retain all spin information via decay angle correlations. We also include the effects of WWZWWZ and WWγWW\gamma anomalous couplings.Comment: 23 pages, 8 figures, 3 table

    Two Photon Radiation in W and Z Boson Production at the Tevatron Collider

    Get PDF
    We present a calculation of two photon radiation in W and Z boson production in hadronic collisions, based on the complete matrix elements for the processes q\bar q'\to\ell^\pm\nu\gamma\gamma and q\bar q\to\ell^+\ell^-\gamma\gamma, including finite charged lepton masses. In order to achieve stable numerical results over the full phase space, multiconfiguration Monte Carlo techniques are used to map the peaks in the differential cross section. Numerical results are presented for the Fermilab Tevatron.Comment: Revtex, 28 pages, 3 figure

    Electron-lattice coupling and the broken symmetries of the molecular salt (TMTTF)2_2SbF6_6

    Full text link
    (TMTTF)2_2SbF6_6 is known to undergo a charge ordering (CO) phase transition at TCO156KT_{CO}\approx156K and another transition to an antiferromagnetic (AF) state at TN8KT_N\approx 8K. Applied pressure PP causes a decrease in both TCOT_{CO} and TNT_N. When P>0.5GPaP>0.5 GPa, the CO is largely supressed, and there is no remaining signature of AF order. Instead, the ground state is a singlet. In addition to establishing an expanded, general phase diagram for the physics of TMTTF salts, we establish the role of electron-lattice coupling in determining how the system evolves with pressure.Comment: 4 pages, 5 figure

    Probing Electroweak Top Quark Couplings at Hadron Colliders

    Full text link
    We consider QCD t\bar{t}\gamma and t\bar{t}Z production at hadron colliders as a tool to measure the tt\gamma and ttZ couplings. At the Tevatron it may be possible to perform a first, albeit not very precise, test of the tt\gamma vector and axial vector couplings in t\bar{t}\gamma production, provided that more than 5 fb^{-1} of integrated luminosity are accumulated. The t\bar{t}Z cross section at the Tevatron is too small to be observable. At the CERN Large Hadron Collider (LHC) it will be possible to probe the tt\gamma couplings at the few percent level, which approaches the precision which one hopes to achieve with a next-generation e^+e^- linear collider. The LHC's capability of associated QCD t\bar{t}V (V=\gamma, Z) production has the added advantage that the tt\gamma and ttZ couplings are not entangled. For an integrated luminosity of 300 fb^{-1}, the ttZ vector (axial vector) coupling can be determined with an uncertainty of 45-85% (15-20%), whereas the dimension-five dipole form factors can be measured with a precision of 50-55%. The achievable limits improve typically by a factor of 2-3 for the luminosity-upgraded (3 ab^{-1}) LHC.Comment: Revtex3, 30 pages, 9 Figures, 6 Table

    E1E2E1-E2 interference in the Coulomb dissociation of 8^8B

    Get PDF
    We investigate the effects arising out of the E1E2E1 - E2 interference in the Coulomb dissociation of 8^8B at beam energies below and around 50 MeV/nucleon. The theory has been formulated within a first order semiclassical scheme of Coulomb excitation, in which both the ground state and the continuum state wave functions of 8^8B enter as inputs. We find that the magnitude of the interference could be large in some cases. However, there are some specific observables which are free from the effects of the E1E2E1 - E2 interference, which is independent of the models used to describe the structure of 8^8B. This will be useful for the analysis of the breakup data in relation to the extraction of the astrophysical factor S17(0)S_{17}(0).Comment: Revised version to appear in Physical Review

    Precision Calculations for Future Colliders

    Get PDF
    I discuss the motivations for, and the status of, precision calculations for the Large Hadron Collider (LHC) and the planned International Linear Collider (ILC).Comment: latex, uses ws-ijmpe.cls, 19 pages, 9 figures, 1 table, based on a talk given at the symposium "50 Years of High Energy Physics at UB", to appear in International Journal of Modern Physics
    corecore