457 research outputs found
A review of the decoherent histories approach to the arrival time problem in quantum theory
We review recent progress in understanding the arrival time problem in
quantum mechanics, from the point of view of the decoherent histories approach
to quantum theory. We begin by discussing the arrival time problem, focussing
in particular on the role of the probability current in the expected classical
solution. After a brief introduction to decoherent histories we review the use
of complex potentials in the construction of appropriate class operators. We
then discuss the arrival time problem for a particle coupled to an environment,
and review how the arrival time probability can be expressed in terms of a POVM
in this case. We turn finally to the question of decoherence of the
corresponding histories, and we show that this can be achieved for simple
states in the case of a free particle, and for general states for a particle
coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding
The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition
We analytically derive the spectrum of gravitational waves due to
magneto-hydrodynamical turbulence generated by bubble collisions in a
first-order phase transition. In contrast to previous studies, we take into
account the fact that turbulence and magnetic fields act as sources of
gravitational waves for many Hubble times after the phase transition is
completed. This modifies the gravitational wave spectrum at large scales. We
also model the initial stirring phase preceding the Kolmogorov cascade, while
earlier works assume that the Kolmogorov spectrum sets in instantaneously. The
continuity in time of the source is relevant for a correct determination of the
peak position of the gravitational wave spectrum. We discuss how the results
depend on assumptions about the unequal-time correlation of the source and
motivate a realistic choice for it. Our treatment gives a similar peak
frequency as previous analyses but the amplitude of the signal is reduced due
to the use of a more realistic power spectrum for the magneto-hydrodynamical
turbulence. For a strongly first-order electroweak phase transition, the signal
is observable with the space interferometer LISA.Comment: 46 pages, 17 figures. Replaced with revised version accepted for
publication in JCA
Supersymmetric Axion-Neutrino Merger
The recently proposed supersymmetric model of the neutrino mass matrix
is modified to merge with a previously proposed axionic solution of the strong
CP problem. The resulting model has only one input scale, i.e. that of
symmetry breaking, which determines both the seesaw neutrino mass scale and the
axion decay constant. It also solves the problem and conserves R parity
automatically.Comment: 7 pages, no figur
Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets
At low energies, electrons in doped graphene sheets are described by a
massless Dirac fermion Hamiltonian. In this work we present a semi-analytical
expression for the dynamical density-density linear-response function of
noninteracting massless Dirac fermions (the so-called "Lindhard" function) at
finite temperature. This result is crucial to describe finite-temperature
screening of interacting massless Dirac fermions within the Random Phase
Approximation. In particular, we use it to make quantitative predictions for
the specific heat and the compressibility of doped graphene sheets. We find
that, at low temperatures, the specific heat has the usual normal-Fermi-liquid
linear-in-temperature behavior, with a slope that is solely controlled by the
renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.
Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach
Renormalization of Hamiltonian field theory is usually a rather painful
algebraic or numerical exercise. By combining a method based on the coupled
cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian
approach to renormalization, we show that a powerful and elegant method exist
to solve such problems. The method is in principle non-perturbative, and is not
necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear
in JHE
Exact Floquet states of a driven condensate and their stabilities
We investigate the Gross-Pitaevskii equation for a classically chaotic
system, which describes an atomic Bose-Einstein condensate confined in an
optical lattice and driven by a spatiotemporal periodic laser field. It is
demonstrated that the exact Floquet states appear when the external
time-dependent potential is balanced by the nonlinear mean-field interaction.
The balance region of parameters is divided into a phase-continuing region and
a phase-jumping one. In the latter region, the Floquet states are
spatiotemporal vortices of nontrivial phase structures and zero-density cores.
Due to the velocity singularities of vortex cores and the blowing-up of
perturbed solutions, the spatiotemporal vortices are unstable periodic states
embedded in chaos. The stability and instability of these Floquet states are
numerically explored by the time evolution of fidelity between the exact and
numerical solutions. It is numerically illustrated that the stable Floquet
states could be prepared from the uniformly initial states by slow growth of
the external potential.Comment: 14 pages, 3 eps figures, final version accepted for publication in J.
Phys.
Symmetric coupling of four spin-1/2 systems
We address the non-binary coupling of identical angular momenta based upon
the representation theory for the symmetric group. A correspondence is pointed
out between the complete set of commuting operators and the
reference-frame-free subsystems. We provide a detailed analysis of the coupling
of three and four spin-1/2 systems and discuss a symmetric coupling of four
spin-1/2 systems.Comment: 20 pages, no figure
Detecting matter effects in long baseline experiments
Experiments strongly suggest that the flavour mixing responsible for the
atmospheric neutrino anomaly is very close to being maximal. Thus, it is of
great theoretical as well as experimental importance to measure any possible
deviation from maximality. In this context, we reexamine the effects of matter
interactions in long baseline neutrino oscillation experiments. Contrary to
popular belief, the muon neutrino survival probability is shown to be quite
sensitive to matter effects. Moreover, for moderately long baselines, the
difference between the survival probilities for and is
shown to be large and sensitive to the deviation of from
maximality. Performing a realistic analysis, we demonstrate that a muon-storage
ring -source alongwith an iron calorimeter detector can measure such
deviations. (Contrary to recent claims, this is not so for the NuMI--{\sc
minos} experiment.) We also discuss the possible correlation in measuring
and in such experiment.Comment: 18 pages, LaTe
Noncommutative Dipole Field Theories And Unitarity
We extend the argument of Gomis and Mehen for violation of unitarity in field
theories with space-time noncommutativity to dipole field theories. In dipole
field theories with a timelike dipole vector, we present 1-loop amplitudes that
violate the optical theorem. A quantum mechanical system with nonlocal
potential of finite extent in time also shows violation of unitarity.Comment: typos corrected, more details added in Sec 5, version to appear in
JHE
Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung
If the dark matter particle is a Majorana fermion, annihilations into two
fermions and one gauge boson could have, for some choices of the parameters of
the model, a non-negligible cross-section. Using a toy model of leptophilic
dark matter, we calculate the constraints on the annihilation cross-section
into two electrons and one weak gauge boson from the PAMELA measurements of the
cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal
astrophysical boost factor allowed in the Milky Way under the assumption that
the leptophilic dark matter particle is the dominant component of dark matter
in our Universe. These constraints constitute very conservative estimates on
the boost factor for more realistic models where the dark matter particle also
couples to quarks and weak gauge bosons, such as the lightest neutralino which
we also analyze for some concrete benchmark points. The limits on the
astrophysical boost factors presented here could be used to evaluate the
prospects to detect a gamma-ray signal from dark matter annihilations at
currently operating IACTs as well as in the projected CTA.Comment: 32 pages; 13 figure
- …
