130 research outputs found

    Qualitative Multi-Objective Reachability for Ordered Branching MDPs

    Get PDF
    We study qualitative multi-objective reachability problems for Ordered Branching Markov Decision Processes (OBMDPs), or equivalently context-free MDPs, building on prior results for single-target reachability on Branching Markov Decision Processes (BMDPs). We provide two separate algorithms for "almost-sure" and "limit-sure" multi-target reachability for OBMDPs. Specifically, given an OBMDP, A\mathcal{A}, given a starting non-terminal, and given a set of target non-terminals KK of size k=Kk = |K|, our first algorithm decides whether the supremum probability, of generating a tree that contains every target non-terminal in set KK, is 11. Our second algorithm decides whether there is a strategy for the player to almost-surely (with probability 11) generate a tree that contains every target non-terminal in set KK. The two separate algorithms are needed: we show that indeed, in this context, "almost-sure" \not= "limit-sure" for multi-target reachability, meaning that there are OBMDPs for which the player may not have any strategy to achieve probability exactly 11 of reaching all targets in set KK in the same generated tree, but may have a sequence of strategies that achieve probability arbitrarily close to 11. Both algorithms run in time 2O(k)AO(1)2^{O(k)} \cdot |\mathcal{A}|^{O(1)}, where A|\mathcal{A}| is the total bit encoding length of the given OBMDP, A\mathcal{A}. Hence they run in polynomial time when kk is fixed, and are fixed-parameter tractable with respect to kk. Moreover, we show that even the qualitative almost-sure (and limit-sure) multi-target reachability decision problem is in general NP-hard, when the size kk of the set KK of target non-terminals is not fixed.Comment: 47 page

    Two Variable vs. Linear Temporal Logic in Model Checking and Games

    Full text link
    Model checking linear-time properties expressed in first-order logic has non-elementary complexity, and thus various restricted logical languages are employed. In this paper we consider two such restricted specification logics, linear temporal logic (LTL) and two-variable first-order logic (FO2). LTL is more expressive but FO2 can be more succinct, and hence it is not clear which should be easier to verify. We take a comprehensive look at the issue, giving a comparison of verification problems for FO2, LTL, and various sublogics thereof across a wide range of models. In particular, we look at unary temporal logic (UTL), a subset of LTL that is expressively equivalent to FO2; we also consider the stutter-free fragment of FO2, obtained by omitting the successor relation, and the expressively equivalent fragment of UTL, obtained by omitting the next and previous connectives. We give three logic-to-automata translations which can be used to give upper bounds for FO2 and UTL and various sublogics. We apply these to get new bounds for both non-deterministic systems (hierarchical and recursive state machines, games) and for probabilistic systems (Markov chains, recursive Markov chains, and Markov decision processes). We couple these with matching lower-bound arguments. Next, we look at combining FO2 verification techniques with those for LTL. We present here a language that subsumes both FO2 and LTL, and inherits the model checking properties of both languages. Our results give both a unified approach to understanding the behaviour of FO2 and LTL, along with a nearly comprehensive picture of the complexity of verification for these logics and their sublogics.Comment: 37 pages, to be published in Logical Methods in Computer Science journal, includes material presented in Concur 2011 and QEST 2012 extended abstract

    Analyzing probabilistic pushdown automata

    Get PDF
    The paper gives a summary of the existing results about algorithmic analysis of probabilistic pushdown automata and their subclasses.V článku je podán přehled známých výsledků o pravděpodobnostních zásobníkových automatech a některých jejich podtřídách

    Decidability Results for Multi-objective Stochastic Games

    Full text link
    We study stochastic two-player turn-based games in which the objective of one player is to ensure several infinite-horizon total reward objectives, while the other player attempts to spoil at least one of the objectives. The games have previously been shown not to be determined, and an approximation algorithm for computing a Pareto curve has been given. The major drawback of the existing algorithm is that it needs to compute Pareto curves for finite horizon objectives (for increasing length of the horizon), and the size of these Pareto curves can grow unboundedly, even when the infinite-horizon Pareto curve is small. By adapting existing results, we first give an algorithm that computes the Pareto curve for determined games. Then, as the main result of the paper, we show that for the natural class of stopping games and when there are two reward objectives, the problem of deciding whether a player can ensure satisfaction of the objectives with given thresholds is decidable. The result relies on intricate and novel proof which shows that the Pareto curves contain only finitely many points. As a consequence, we get that the two-objective discounted-reward problem for unrestricted class of stochastic games is decidable.Comment: 35 page

    Permissive Controller Synthesis for Probabilistic Systems

    Get PDF
    We propose novel controller synthesis techniques for probabilistic systems modelled using stochastic two-player games: one player acts as a controller, the second represents its environment, and probability is used to capture uncertainty arising due to, for example, unreliable sensors or faulty system components. Our aim is to generate robust controllers that are resilient to unexpected system changes at runtime, and flexible enough to be adapted if additional constraints need to be imposed. We develop a permissive controller synthesis framework, which generates multi-strategies for the controller, offering a choice of control actions to take at each time step. We formalise the notion of permissivity using penalties, which are incurred each time a possible control action is disallowed by a multi-strategy. Permissive controller synthesis aims to generate a multi-strategy that minimises these penalties, whilst guaranteeing the satisfaction of a specified system property. We establish several key results about the optimality of multi-strategies and the complexity of synthesising them. Then, we develop methods to perform permissive controller synthesis using mixed integer linear programming and illustrate their effectiveness on a selection of case studies

    Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations, and Reachability for Branching Markov Decision Processes?

    Get PDF
    We give polynomial time algorithms for quantitative (and qualitative) reachability analysis for Branching Markov Decision Processes (BMDPs). Specifically, given a BMDP, and given an initial population, where the objective of the controller is to maximize (or minimize) the probability of eventually reaching a population that contains an object of a desired (or undesired) type, we give algorithms for approximating the supremum (infimum) reachability probability, within desired precision epsilon > 0, in time polynomial in the encoding size of the BMDP and in log(1/epsilon). We furthermore give P-time algorithms for computing epsilon-optimal strategies for both maximization and minimization of reachability probabilities. We also give P-time algorithms for all associated qualitative analysis problems, namely: deciding whether the optimal (supremum or infimum) reachability probabilities are 0 or 1. Prior to this paper, approximation of optimal reachability probabilities for BMDPs was not even known to be decidable. Our algorithms exploit the following basic fact: we show that for any BMDP, its maximum (minimum) non-reachability probabilities are given by the greatest fixed point (GFP) solution g* in [0,1]^n of a corresponding monotone max (min) Probabilistic Polynomial System of equations (max/min-PPS), x=P(x), which are the Bellman optimality equations for a BMDP with non-reachability objectives. We show how to compute the GFP of max/min PPSs to desired precision in P-time. We also study more general Branching Simple Stochastic Games (BSSGs) with (non-)reachability objectives. We show that: (1) the value of these games is captured by the GFP of a corresponding max-minPPS; (2) the quantitative problem of approximating the value is in TFNP; and (3) the qualitative problems associated with the value are all solvable in P-time

    Optimizing Performance of Continuous-Time Stochastic Systems using Timeout Synthesis

    Full text link
    We consider parametric version of fixed-delay continuous-time Markov chains (or equivalently deterministic and stochastic Petri nets, DSPN) where fixed-delay transitions are specified by parameters, rather than concrete values. Our goal is to synthesize values of these parameters that, for a given cost function, minimise expected total cost incurred before reaching a given set of target states. We show that under mild assumptions, optimal values of parameters can be effectively approximated using translation to a Markov decision process (MDP) whose actions correspond to discretized values of these parameters

    Multi-objective Robust Strategy Synthesis for Interval Markov Decision Processes

    Full text link
    Interval Markov decision processes (IMDPs) generalise classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that prevents the knowledge of the exact transition probabilities. In this paper, we consider the problem of multi-objective robust strategy synthesis for interval MDPs, where the aim is to find a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. We first show that this problem is PSPACE-hard. Then, we provide a value iteration-based decision algorithm to approximate the Pareto set of achievable points. We finally demonstrate the practical effectiveness of our proposed approaches by applying them on several case studies using a prototypical tool.Comment: This article is a full version of a paper accepted to the Conference on Quantitative Evaluation of SysTems (QEST) 201

    The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in simple stochastic multiplayer games. We show that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In particular, we prove that the following problem is undecidable: Given a game G, does there exist a pure-strategy Nash equilibrium of G where player 0 wins with probability 1. Moreover, this problem remains undecidable if it is restricted to strategies with (unbounded) finite memory. However, if mixed strategies are allowed, decidability remains an open problem. One way to obtain a provably decidable variant of the problem is restricting the strategies to be positional or stationary. For the complexity of these two problems, we obtain a common lower bound of NP and upper bounds of NP and PSPACE respectively.Comment: 23 pages; revised versio

    Is there a best Büchi automaton for explicit model checking?

    Get PDF
    LTL to Büchi automata (BA) translators are traditionally optimized to produce automata with a small number of states or a small number of non-deterministic states. In this paper, we search for properties of Büchi automata that really influence the performance of explicit model checkers. We do that by manual analysis of several automata and by experiments with common LTL-to-BA translators and realistic verification tasks. As a result of these experiences, we gain a better insight into the characteristics of automata that work well with Spin.Překladače LTL na Büchiho automaty jsou obvykle optimalizovány tak, aby produkovaly automaty s co nejmenším počtem stavů, či s co nejmenším počtem nedeterministických stavů. V této publikaci hledáme vlastnosti Büchiho automatů, které skutečně ovlivňují výkon nástrojů pro explicitní metodu ověřování modelu (model checking). A to pomocí manuální analýzy několika automatů a experimenty s běžnými překladače LTL na automaty a realistickými verifikačními úlohami. Výsledkem těchto experimentů je lepší porozumění charakteristik automatů, které jsou dobré pro model checker Spin
    corecore