Qualitative Multi-Objective Reachability for Ordered Branching MDPs

Abstract

We study qualitative multi-objective reachability problems for Ordered Branching Markov Decision Processes (OBMDPs), or equivalently context-free MDPs, building on prior results for single-target reachability on Branching Markov Decision Processes (BMDPs). We provide two separate algorithms for "almost-sure" and "limit-sure" multi-target reachability for OBMDPs. Specifically, given an OBMDP, A\mathcal{A}, given a starting non-terminal, and given a set of target non-terminals KK of size k=Kk = |K|, our first algorithm decides whether the supremum probability, of generating a tree that contains every target non-terminal in set KK, is 11. Our second algorithm decides whether there is a strategy for the player to almost-surely (with probability 11) generate a tree that contains every target non-terminal in set KK. The two separate algorithms are needed: we show that indeed, in this context, "almost-sure" \not= "limit-sure" for multi-target reachability, meaning that there are OBMDPs for which the player may not have any strategy to achieve probability exactly 11 of reaching all targets in set KK in the same generated tree, but may have a sequence of strategies that achieve probability arbitrarily close to 11. Both algorithms run in time 2O(k)AO(1)2^{O(k)} \cdot |\mathcal{A}|^{O(1)}, where A|\mathcal{A}| is the total bit encoding length of the given OBMDP, A\mathcal{A}. Hence they run in polynomial time when kk is fixed, and are fixed-parameter tractable with respect to kk. Moreover, we show that even the qualitative almost-sure (and limit-sure) multi-target reachability decision problem is in general NP-hard, when the size kk of the set KK of target non-terminals is not fixed.Comment: 47 page

    Similar works