511 research outputs found

    Intersecting Branes, Defect Conformal Field Theories and Tensionless Strings

    Get PDF
    The defect conformal field theory describing intersecting D3-branes at a C^2/Z_k orbifold is used to (de)construct the theory of intersecting M5-branes, as well as M5-branes wrapping the holomorphic curve xy=c. The possibility of a 't Hooft anomaly due to tensionless strings at the intersection is discussed. This note is based on a talk given by Zachary Guralnik at the 35th International Symposium Ahrenshoop on the Theory of Elementary Particles.Comment: latex, one figure, 9pages. Talk given by Z.G. at the 35th International Symposium Ahrenshoop on the Theory of Elementary Particle

    Fluid dynamics of R-charged black holes

    Full text link
    We construct electrically charged AdS_5 black hole solutions whose charge, mass and boost-parameters vary slowly with the space-time coordinates. From the perspective of the dual theory, these are equivalent to hydrodynamic configurations with varying chemical potential, temperature and velocity fields. We compute the boundary theory transport coefficients associated with a derivative expansion of the energy momentum tensor and R-charge current up to second order. In particular, we find a first order transport coefficient associated with the axial component of the current.Comment: 31 pages, v2: published version; added some references, discussion of the charge-current changed, results unchanged, v3: typo in formula (15) changed, v4: added footnote 3 in order to clarify the relation of our results to those of arXiv:0809.259

    Towards quantifying information flows: Relative entropy in deep neural networks and the renormalization group

    Get PDF
    We investigate the analogy between the renormalization group (RG) and deep neural networks, wherein subsequent layers of neurons are analogous to successive steps along the RG. In particular, we quantify the flow of information by explicitly computing the relative entropy or Kullback-Leibler divergence in both the one- and two-dimensional Ising models under decimation RG, as well as in a feedforward neural network as a function of depth. We observe qualitatively identical behavior characterized by the monotonic increase to a parameter-dependent asymptotic value. On the quantum field theory side, the monotonic increase confirms the connection between the relative entropy and the c-theorem. For the neural networks, the asymptotic behavior may have implications for various information maximization methods in machine learning, as well as for disentangling compactness and generalizability. Furthermore, while both the two-dimensional Ising model and the random neural networks we consider exhibit non-trivial critical points, the relative entropy appears insensitive to the phase structure of either system. In this sense, more refined probes are required in order to fully elucidate the flow of information in these models. (C) Copyright J. Erdmenger et al. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation

    Gauge/Gravity Duality and Some Applications

    Full text link
    We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.Comment: 19 pages, 2 figures, Contribution to "Conference in Honor of Murray Gell-Mann's 80th Birthday

    Low-Energy Theorems from Holography

    Full text link
    In the context of gauge/gravity duality, we verify two types of gauge theory low-energy theorems, the dilation Ward identities and the decoupling of heavy flavor. First, we provide an analytic proof of non-trivial dilation Ward identities for a theory holographically dual to a background with gluon condensate (the self-dual Liu--Tseytlin background). In this way an important class of low-energy theorems for correlators of different operators with the trace of the energy-momentum tensor is established, which so far has been studied in field theory only. Another low-energy relationship, the so-called decoupling theorem, is numerically shown to hold universally in three holographic models involving both the quark and the gluon condensate. We show this by comparing the ratio of the quark and gluon condensates in three different examples of gravity backgrounds with non-trivial dilaton flow. As a by-product of our study, we also obtain gauge field condensate contributions to meson transport coefficients.Comment: 32 pages, 4 figures, two references added, typos remove

    Four-Dimensional Superconformal Theories with Interacting Boundaries or Defects

    Full text link
    We study four-dimensional superconformal field theories coupled to three-dimensional superconformal boundary or defect degrees of freedom. Starting with bulk N=2, d=4 theories, we construct abelian models preserving N=2, d=3 supersymmetry and the conformal symmetries under which the boundary/defect is invariant. We write the action, including the bulk terms, in N=2, d=3 superspace. Moreover we derive Callan-Symanzik equations for these models using their superconformal transformation properties and show that the beta functions vanish to all orders in perturbation theory, such that the models remain superconformal upon quantization. Furthermore we study a model with N=4 SU(N) Yang-Mills theory in the bulk coupled to a N=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freedman and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by Karch and Randall. We write this model in N=2, d=3 superspace, which has the distinct advantage that non-renormalization theorems become transparent. Using N=4, d=3 supersymmetry, we argue that the model is conformal.Comment: 30 pages, 4 figures, AMSLaTeX, revised comments on Chern-Simons term, references adde

    Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field

    Full text link
    We consider a D7-brane probe of AdS5×S5AdS_{5}\times S^5 in the presence of pure gauge BB-field. The dual gauge theory is flavored Yang-Mills theory in external magnetic field. We explore the dependence of the fermionic condensate on the bare quark mass mqm_{q} and study the discrete self-similar behavior of the theory near the origin of the parametric space. We calculate the critical exponents of the bare quark mass and the fermionic condensate. A study of the meson spectrum supports the expectation based on thermodynamic considerations that at zero bare quark mass the stable phase of the theory is a chiral symmetry breaking one. Our study reveals the self-similar structure of the spectrum near the critical phase of the theory, characterized by zero fermionic condensate and we calculate the corresponding critical exponent of the meson spectrum.Comment: 29 pages, 9 figures. Accepted in JHEP. Updated to mach the published version. One figure added, some definitions improve

    Properties of Chiral Wilson Loops

    Full text link
    We study a class of Wilson Loops in N =4, D=4 Yang-Mills theory belonging to the chiral ring of a N=2, d=1 subalgebra. We show that the expectation value of these loops is independent of their shape. Using properties of the chiral ring, we also show that the expectation value is identically 1. We find the same result for chiral loops in maximally supersymmetric Yang-Mills theory in three, five and six dimensions. In seven dimensions, a generalized Konishi anomaly gives an equation for chiral loops which closely resembles the loop equations of the three dimensional Chern-Simons theory.Comment: 15 pages, two pictures, some references adde

    Adding flavour to the Polchinski-Strassler background

    Get PDF
    As an extension of holography with flavour, we analyze in detail the embedding of a D7-brane probe into the Polchinski-Strassler gravity background, in which the breaking of conformal symmetry is induced by a 3-form flux G_3. This corresponds to giving masses to the adjoint chiral multiplets. We consider the N=2 supersymmetric case in which one of the adjoint chiral multiplets is kept massless while the masses of the other two are equal. This setup requires a generalization of the known expressions for the backreaction of G_3 in the case of three equal masses to generic mass values. We work to second order in the masses to obtain the embedding of D7-brane probes in the background. At this order, the 2-form potentials corresponding to the background flux induce an 8-form potential which couples to the worldvolume of the D7-branes. We show that the embeddings preserve an SU(2) x SU(2) symmetry. We study possible embeddings both analytically in a particular approximation, as well as numerically. The embeddings preserve supersymmetry, as we investigate using the approach of holographic renormalization. The meson spectrum associated to one of the embeddings found reflects the presence of the adjoint masses by displaying a mass gap.Comment: LaTeX, 50 pages, 9 figure
    • 

    corecore