540 research outputs found

    The level of occlusion of included bark affects the strength of bifurcations in hazel (Corylus avellana L.)

    Get PDF
    Bark-included junctions in trees are considered a defect as the bark weakens the union between the branches. To more accurately assess this weakening effect, 241 bifurcations from young specimens of hazel (Corylus avellana L.), of which 106 had bark inclusions, were harvested and subjected to rupture tests. Three-point bending of the smaller branches acted as a benchmark for the relative strength of the bifurcations. Bifurcations with included bark failed at higher displacements, and their modulus of rupture was 24% lower than normally formed bifurcations, while stepwise regression showed that the best predictors of strength in these bark-included bifurcations were the diameter ratio and width of the bark inclusion, which explained 16.6% and 8.1% of the variability, respectively. Cup-shaped, bark-included bifurcations where included bark was partially occluded by xylem were found, on average, to be 36% stronger than those, where included bark was situated at the bifurcation apex. These findings show that there are significant gradations in the strength of bark-included bifurcations in juvenile hazel trees that relate directly to the level of occlusion of the bark into the bifurcation. It therefore may be possible to assess the extent of the defect that a bark-included bifurcation represents in a tree by assessing the relative level of occlusion of the included bark

    An assessment of the remodelling of bifurcations in hazel (Corylus avellana L.) in response to bracing, drilling and splitting

    Get PDF
    This paper provides an insight into the ability of bifurcations in hazel trees to remodel themselves after bracing, drilling and splitting. The study uses evidence from field observations and testing the strength of these bifurcations using a universal testing machine alongside wood density tests. This work highlights the importance of the centrally-placed xylem at the apex of hazel forks in supplying tensile strength to the bifurcation. Additionally, it provides evidence that rod-braced bifurcations can atrophy in terms of their tensile strength, growth rate and wood density, suggesting that thigmomorphogenesis plays an important role in the development of a strong bifurcation

    Spring phenology shows genetic variation among and within populations in seedlings of Scots pine (Pinus sylvestris L.) in the Scottish Highlands

    Get PDF
    Background: Genetic differentiation in phenotypic traits is often observed among forest tree populations, but less is known about patterns of adaptive variation within populations. Such variation is expected to enhance the survival likelihood of extant populations under climate change. Aims: Scots pine (Pinus sylvestris) occurs over a spatially and temporally heterogeneous landscape in Scotland. Our goal was to examine whether populations had differentiated genetically in timing of bud flush in response to spatial heterogeneity and whether variation was also maintained within populations. Methods: Two common-garden studies, involving maternal families of seedlings from 21 native pinewoods, were established and variation in the trait was measured at the beginning of the second growing season. Results: Populations showed genetic differences in the trait correlated with the length of growing season at their site of origin, but the majority of variation was observed within populations. Populations also differed in their levels of variation in the trait; a pattern that may be influenced by spatial variation in the extent of temporal climate variability. Conclusions: Our findings suggest that populations have adapted to their home environments and that they also have substantial ability to adapt in situ to changes in growing season length

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat

    Three-dimensional simulation for fast forward flight of a calliope hummingbird

    Get PDF
    We present a computational study of flapping-wing aerodynamics of a calliope hummingbird (Selasphorus calliope) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3 m s−1. The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts

    Flight of the dragonflies and damselflies

    Get PDF
    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Primary caregivers’ experiences of caring for their child post cardiac intervention: An exploratory study

    Get PDF
    Magister Public Health - MPHChildren in developing countries are now receiving both surgical and catheter-based interventions for the repair of congenital heart defects. Despite the technically advanced treatment options and improved survival rates of children with congenital heart defects, little is known about the experiences and challenges of primary caregivers whilst taking care of their child after a cardiac intervention in South Africa. This exploratory, descriptive study used a qualitative research approach to describe some of the key experiences of eight primary caregivers as they took care of their child in their home environment following a cardiac interventional procedure
    corecore