47,127 research outputs found
The BCS Critical Temperature in a Weak External Electric Field via a Linear Two-Body Operator
We study the critical temperature of a superconductive material in a weak external electric potential via a linear approximation of the BCS functional. We reproduce a similar result as in Frank et al. (Commun Math Phys 342(1):189–216, 2016, [5]) using the strategy introduced in Frank et al. (The BCS critical temperature in a weak homogeneous magnetic field, [2]), where we considered the case of an external constant magnetic field
The BCS critical temperature in a weak external electric field via a linear two-body operator
We study the critical temperature of a superconductive material in a weak
external electric potential via a linear approximation of the BCS functional.
We reproduce a similar result as in [Frank, Hainzl, Seiringer, Solovej, 2016]
using the strategy introduced in [Frank, Hainzl, Langmann, 2018], where we
considered the case of an external constant magnetic field.Comment: Dedicated to Herbert Spohn on the occasion of his seventieth
birthday; 29 page
An Optical Study of Two VY Sculptoris-Type Cataclysmic Binary Stars: V704 And and RX J2338+431
We report observations of the known cataclysmic variable star (CV) V704 And,
and also confirm that the optical counterpart of the ROSAT Galactic Plane
Survey source RX J2338+431 is a heretofore-neglected CV. Photometric and
spectroscopic observations from MDM Observatory show both systems to be
novalike variables that exhibit dips of 4-5 magnitudes from their mean
brightnesses, establishing them as members of the VY~Scl subclass. From
high-state emission-line radial velocities, we determine orbital periods of
0.151424(3) d (3.63 hr) for V704 And and 0.130400(1) d (3.13 hr) for RX
J2338+431. In V704 And, we find that the H-alpha emission-line measures cluster
into distinct regions on a plot of equivalent width versus full width at
half-maximum, which evidently correspond to high, intermediate, and low
photometric states. This allows us to assign spectra to photometric states when
contemporaneous photometry is not available, an apparently novel method that
may be useful in studies of other novalikes. Our low-state spectra of RX
J2338+431 show features of an M-type secondary star, from which we estimate a
distance of 890 +- 200 pc, in good agreement with the Gaia DR2 parallax.Comment: Accepted for Astronomical Journa
Possible Lattice Distortions in the Hubbard Model for Graphene
The Hubbard model on the honeycomb lattice is a well known model for
graphene. Equally well known is the Peierls type of instability of the lattice
bond lengths. In the context of these two approximations we ask and answer the
question of the possible lattice distortions for graphene in zero magnetic
field. The answer is that in the thermodynamic limit only periodic,
reflection-symmetric distortions are allowed and these have at most six atoms
per unit cell as compared to two atoms for the undistorted lattice.Comment: 5 pages, 3 figure
Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska
[1] Understanding of past climate variability in the Bering Strait region and adjacent land areas is limited by a paucity of long instrumental and paleoclimatic records. Here we describe a reconstruction of May - August temperatures for Nome, Seward Peninsula, Alaska based on maximum latewood density data which considerably extends the available climatic information. The reconstruction shows warm conditions in the late 1600s and middle-20th century and cooler conditions in the 1800s. The summer of 1783, coinciding with the Laki, Iceland volcanic event, is among the coldest in the reconstruction. Statistically significant relationships with the North Pacific Index and Bering-Chukchi sea surface temperatures indicate that the Seward tree-ring data are potentially useful as long-term indices of atmosphere-ocean variability in the region.</p
Formation and Function of the Rbl2p-beta-Tubulin Complex
The yeast protein Rbl2p suppresses the deleterious effects of excess beta-tubulin as efficiently as does alpha-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with beta-tubulin that does not contain alpha-tubulin, thus defining a second pool of beta-tubulin in the cell. Formation of the complex depends upon the conformation of beta-tubulin. Newly synthesized beta-tubulin can bind to Rbl2p before it binds to alpha-tubulin. Rbl2p can also bind beta-tubulin from the alpha/beta-tubulin heterodimer, apparently by competing with alpha-tubulin. The Rbl2p-beta-tubulin complex has a half-life of ~2.5 h and is less stable than the alpha/beta-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing beta-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p-beta-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains
Transition from adiabatic inspiral to plunge into a spinning black hole
A test particle of mass mu on a bound geodesic of a Kerr black hole of mass M
>> mu will slowly inspiral as gravitational radiation extracts energy and
angular momentum from its orbit. This inspiral can be considered adiabatic when
the orbital period is much shorter than the timescale on which energy is
radiated, and quasi-circular when the radial velocity is much less than the
azimuthal velocity. Although the inspiral always remains adiabatic provided mu
<< M, the quasi-circular approximation breaks down as the particle approaches
the innermost stable circular orbit (ISCO). In this paper, we relax the
quasi-circular approximation and solve the radial equation of motion explicitly
near the ISCO. We use the requirement that the test particle's 4-velocity
remain properly normalized to calculate a new contribution to the difference
between its energy and angular momentum. This difference determines how a black
hole's spin changes following a test-particle merger, and can be extrapolated
to help predict the mass and spin of the final black hole produced in
finite-mass-ratio black-hole mergers. Our new contribution is particularly
important for nearly maximally spinning black holes, as it can affect whether a
merger produces a naked singularity.Comment: 9 pages, 6 figures, final version published in PRD with minor change
Ocean acidification in the aftermath of the Marinoan glaciation
Boron isotope patterns preserved in cap carbonates deposited in the aftermath of the younger Cryogenian (Marinoan, ca. 635 Ma) glaciation confirm a temporary ocean acidification event on the continental margin of the southern Congo craton, Namibia. To test the significance of this acidification event and reconstruct Earth’s global seawater pH states at the Cryogenian-Ediacaran transition, we present a new boron isotope data set recorded in cap carbonates deposited on the Yangtze Platform in south China and on the Karatau microcontinent in Kazakhstan. Our compiled δ11B data reveal similar ocean pH patterns for all investigated cratons and confirm the presence of a global and synchronous ocean acidification event during the Marinoan deglacial period, compatible with elevated postglacial pCO2 concentrations. Differences in the details of the ocean acidification event point to regional distinctions in the buffering capacity of Ediacaran seawater
Wounds and Their Treatment
Wounds occur so frequently in animals that their proper treatment is one of the most important subjects in veterinary surgery. A wound is a break in the continuity of tissue in any part of the body and is usually produced by an external instrument. When a wound is made by a sharp instrument the edges are smooth and there is little damage to the tissue. If the wound is made by a blunt instrument, the skin mayor may not be broken. The trauma of the tissues produces a bruising of the tissue with rupture of the capillaries, small arteries, veins and lymphatics. The escape of blood and lymph into the tissues produces a swelling that varies with the size of the tissue and degree of traumatism
- …