11,585 research outputs found

    Holographic dark energy described at the Hubble length

    Full text link
    We consider holographic cosmological models of dark energy in which the infrared cutoff is set by the Hubble's radius. We show that any interacting dark energy model with a matter like term able to alleviate the coincidence problem (i.e., with a positive interaction term, regardless of its detailed form) can be recast as a noninteracting model in which the holographic parameter evolves slowly with time. Two specific cases are analyzed. First, the interacting model presented in [1] is considered, and its corresponding noninteracting version found. Then, a new noninteracting model, with a specific expression of the time-dependent holographic parameter, is proposed and analyzed along with its corresponding interacting version. We constrain the parameters of both models using observational data, and show that they can be told apart at the perturbative level.Comment: 15 pages, 6 figure

    On the average Gamma-Ray Burst X-ray flaring activity

    Full text link
    Gamma-ray burst X-ray flares are believed to mark the late time activity of the central engine. We compute the temporal evolution of the average flare luminosity in the common rest frame energy band of 44 GRBs taken from the large \emph{Swift} 5-years data base. Our work highlights the importance of a proper consideration of the threshold of detection of flares against the contemporaneous continuous X-ray emission. In the time interval 30st2.7±0.130 \rm{s}\propto t^{-2.7\pm 0.1}; this implies that the flare isotropic energy scaling is Eiso,flaret1.7E_{\rm{iso,flare}}\propto t^{-1.7}. The decay of the continuum underlying the flare emission closely tracks the average flare luminosity evolution, with a typical flare to steep-decay luminosity ratio which is Lflare/Lsteep=4.7L_{\rm{flare}}/L_{\rm{steep}}=4.7: this suggests that flares and continuum emission are deeply related to one another. We infer on the progenitor properties considering different models. According to the hyper-accreting black hole scenario, the average flare luminosity scaling can be obtained in the case of rapid accretion (tacctt_{\rm{acc}}\ll t) or when the last \sim 0.5 M_{\sun} of the original 14 M_{\sun} progenitor star are accreted. Alternatively, the steep t2.7\propto t^{-2.7} behaviour could be triggered by a rapid outward expansion of an accretion shock in the material feeding a convective disk. If instead we assume the engine to be a rapidly spinning magnetar, then its rotational energy can be extracted to power a jet whose luminosity is likely to be between the monopole (Le2tL\propto e^{-2t}) and dipole (Lt2L\propto t^{-2}) cases. In both scenarios we suggest the variability, which is the main signature of the flaring activity, to be established as a consequence of different kinds of instabilities.Comment: MNRAS accepte

    Dynamics of shallow impact cratering

    Get PDF
    We present data for the time-dependence of wooden spheres penetrating into a loose non-cohesive packing of glass beads. The stopping time is a factor of three longer than the time d/vd/v_\circ needed to travel the total penetration distance dd at the impact speed vv_\circ. The acceleration decreases monotonically throughout the impact. These kinematics are modelled by a position- and velocity-dependent stopping force that is constrained to reproduce prior observations for the scaling of the penetration depth with the total drop distance.Comment: 4 pages, experimen

    Supervision des clusters de surveillance et de traitement de données dans l'expérience LHCb

    Get PDF
    The LHC at CERN is the project that looks for answers to different questions that the physics has made itself, such as the presence of the Higgs boson, the origin of mass in particles, the existence of supersymmetry, and many others. In the LHCb experiment, analysis corresponding to the asymmetry between matter ans antimatter will be made.The collisions will produce ephemeral information that will be obtained by a readout system that will send the data to the processing and monitoring farms. Once preprocessed, the relevant information will selected to be permanently stored. My work was to develop tools that permit the supervision of the monitoring and processing systems, find their errors and notify the workgroup. The processing farm has 50 clusters with approximately 1000-2000 nodes and the monitoring farm has a cluster with 50 nodes. The applications I made are the Tasksupervisor and the ClusterMonitor.The TaskSupervisor finds the errors en each node of a cluster and publishes the results while the ClusterMonitor collects the information of the TaskSupervisors and concentrates them in a single place

    Block to granular-like transition in dense bubble flows

    Full text link
    We have experimentally investigated 2-dimensional dense bubble flows underneath inclined planes. Velocity profiles and velocity fluctuations have been measured. A broad second-order phase transition between two dynamical regimes is observed as a function of the tilt angle θ\theta. For low θ\theta values, a block motion is observed. For high θ\theta values, the velocity profile becomes curved and a shear velocity gradient appears in the flow.Comment: Europhys. Lett. (2003) in pres

    Droplet and cluster formation in freely falling granular streams

    Full text link
    Particle beams are important tools for probing atomic and molecular interactions. Here we demonstrate that particle beams also offer a unique opportunity to investigate interactions in macroscopic systems, such as granular media. Motivated by recent experiments on streams of grains that exhibit liquid-like breakup into droplets, we use molecular dynamics simulations to investigate the evolution of a dense stream of macroscopic spheres accelerating out of an opening at the bottom of a reservoir. We show how nanoscale details associated with energy dissipation during collisions modify the stream's macroscopic behavior. We find that inelastic collisions collimate the stream, while the presence of short-range attractive interactions drives structure formation. Parameterizing the collision dynamics by the coefficient of restitution (i.e., the ratio of relative velocities before and after impact) and the strength of the cohesive interaction, we map out a spectrum of behaviors that ranges from gas-like jets in which all grains drift apart to liquid-like streams that break into large droplets containing hundreds of grains. We also find a new, intermediate regime in which small aggregates form by capture from the gas phase, similar to what can be observed in molecular beams. Our results show that nearly all aspects of stream behavior are closely related to the velocity gradient associated with vertical free fall. Led by this observation, we propose a simple energy balance model to explain the droplet formation process. The qualitative as well as many quantitative features of the simulations and the model compare well with available experimental data and provide a first quantitative measure of the role of attractions in freely cooling granular streams
    corecore