1,068 research outputs found
Extra Spacetime Dimensions and Unification
We study the effects of extra spacetime dimensions at intermediate mass
scales, as expected in string theories with large-radius compactifications, and
focus on the gauge and Yukawa couplings within the Minimal Supersymmetric
Standard Model. We find that extra spacetime dimensions naturally lead to the
appearance of grand unified theories at scales substantially below the usual
GUT scale. Furthermore, we show that extra spacetime dimensions provide a
natural mechanism for explaining the fermion mass hierarchy by permitting the
Yukawa couplings to receive power-law corrections. We also discuss how
proton-decay constraints may be addressed in this scenario, and suggest that
proton-decay amplitudes may be exactly cancelled to all orders in perturbation
theory as a result of new Kaluza-Klein selection rules corresponding to the
extra spacetime dimensions.Comment: 16 pages, LaTeX, 3 figures; revised and expanded discussion of Yukawa
coupling
TeV-scale GUTs
In this talk, we summarize our recent proposal for lowering the scale of
grand unification to the TeV range though the appearance of extra spacetime
dimensions. Particular emphasis is placed on the perturbativity and
predictivity of our scenario, as well as its sensitivity to unification-scale
effects.
(Proceedings of invited talks given by KRD at PASCOS '98; by TG at the
European Network Meeting ``From the Planck Scale to the Electroweak Scale'';
and by KRD and TG at SUSY '98.)Comment: 9 pages, LaTeX, 2 figures. Talk Proceeding
Grand Unification at Intermediate Mass Scales through Extra Dimensions
One of the drawbacks of conventional grand unification scenarios has been
that the unification scale is too high to permit direct exploration. In this
paper, we show that the unification scale can be significantly lowered (perhaps
even to the TeV scale) through the appearance of extra spacetime dimensions.
Such extra dimensions are a natural consequence of string theories with
large-radius compactifications. We show that extra spacetime dimensions
naturally lead to gauge coupling unification at intermediate mass scales, and
moreover may provide a natural mechanism for explaining the fermion mass
hierarchy by permitting the fermion masses to evolve with a power-law
dependence on the mass scale. We also show that proton-decay constraints may be
satisfied in our scenario due to the higher-dimensional cancellation of
proton-decay amplitudes to all orders in perturbation theory. Finally, we
extend these results by considering theories without supersymmetry;
experimental collider signatures; and embeddings into string theory. The latter
also enables us to develop several novel methods of explaining the fermion mass
hierarchy via -branes. Our results therefore suggest a new approach towards
understanding the physics of grand unification as well as the phenomenology of
large-radius string compactifications.Comment: 65 pages, LaTeX, 20 figure
F-term uplifting via consistent D-terms
The issue of fine-tuning necessary to achieve satisfactory degree of
hierarchy between moduli masses, the gravitino mass and the scale of the
cosmological constant has been revisited in the context of supergravities with
consistent D-terms. We have studied (extended) racetrack models where
supersymmetry breaking and moduli stabilisation cannot be separated from each
other. We show that even in such cases the realistic hierarchy can be achieved
on the expense of a single fine-tuning. The presence of two condensates changes
the role of the constant term in the superpotential, W_0, and solutions with
small vacuum energy and large gravitino mass can be found even for very small
values of W_0. Models where D-terms are allowed to vanish at finite vevs of
moduli fields - denoted `cancellable' D-terms - and the ones where D-terms may
vanish only at infinite vevs of some moduli - denoted `non-cancellable' -
differ markedly in their properties. It turns out that the tuning with respect
to the Planck scale required in the case of cancellable D-terms is much weaker
than in the case of non-cancellable ones. We have shown that, against
intuition, a vanishing D-term can trigger F-term uplifting of the vacuum energy
due to the stringent constraint it imposes on vacuum expectation values of
charged fields. Finally we note that our models only rely on two dimensionful
parameters: M_P and W_0.Comment: 10 pages, 2 figures, plain Latex, references adde
Gauge vs. Gravity mediation in models with anomalous U(1)'s
In an attempt to implement gauge mediation in string theory, we study string
effective supergravity models of supersymmetry breaking, containing anomalous
gauge factors. We discuss subtleties related to gauge invariance and the
stabilization of the Green-Schwarz moduli, which set non-trivial constraints on
the transmission of supersymmetry breaking to MSSM via gauge interactions.
Given those constraints, it is difficult to obtain the dominance of gauge
mediation over gravity mediation. Furthermore, generically the gauge
contributions to soft terms contain additional non-standard terms coming from
D-term contributions. Motivated by this, we study the phenomenology of recently
proposed hybrid models, where gravity and gauge mediations compete at the GUT
scale, and show that such a scenario can respect WMAP constraints and would be
easily testable at LHC.Comment: 40 pages, 5 figure
Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization
It is well-known that Scherk-Schwarz compactifications in string theory have
a tachyon in the closed string spectrum appearing for a critical value of a
compact radius. The tachyon can be removed by an appropriate orientifold
projection in type II strings, giving rise to tachyon-free compactifications.
We present explicit examples of this type in various dimensions, including six
and four-dimensional chiral examples, with softly broken supersymmetry in the
closed sector and non-BPS configurations in the open sector. These vacua are
interesting frameworks for studying various cosmological issues. We discuss
four-dimensional cosmological solutions and moduli stabilization triggered by
nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation
We study the influence of anomalous U(1) symmetries and their associated
D-terms on the vacuum structure of global field theories once they are coupled
to N=1 supergravity and in the context of string compactifications with moduli
stabilisation. In particular, we focus on a IIB string motivated construction
of the ISS scenario and examine the influence of one additional U(1) symmetry
on the vacuum structure. We point out that in the simplest one-Kahler modulus
compactification, the original ISS vacuum gets generically destabilised by a
runaway behaviour of the potential in the modulus direction. In more general
compactifications with several Kahler moduli, we find a novel realisation of
the LARGE volume scenario with D-term uplifting to de Sitter space and both
D-term and F-term supersymmetry breaking. The structure of soft supersymmetry
breaking terms is determined in the preferred scenario where the standard model
cycle is not stabilised non-perturbatively and found to be flavour universal.
Our scenario also provides a purely supersymmetric realisation of Kahler moduli
(blow-up and fibre) inflation, with similar observational properties as the
original proposals but without the need to include an extra (non-SUSY)
uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction
Flavour in supersymmetry: horizontal symmetries or wave function renormalisation
We compare theoretical and experimental predictions of two main classes of
models addressing fermion mass hierarchies and flavour changing neutral
currents (FCNC) effects in supersymmetry: Froggatt-Nielsen (FN) U(1) gauged
flavour models and Nelson-Strassler/extra dimensional models with hierarchical
wave functions for the families. We show that whereas the two lead to identical
predictions in the fermion mass matrices, the second class generates a stronger
suppression of FCNC effects. We prove that, whereas at first sight the FN setup
is more constrained due to anomaly cancelation conditions, imposing unification
of gauge couplings in the second setup generates conditions which precisely
match the mixed anomaly constraints in the FN setup. Finally, we provide an
economical extra dimensional realisation of the hierarchical wave functions
scenario in which the leptonic FCNC can be efficiently suppressed due to the
strong coupling (CFT) origin of the electron mass.Comment: 23 page
Moduli stabilization with Fayet-Iliopoulos uplift
In the recent years, phenomenological models of moduli stabilization were
proposed, where the dynamics of the stabilization is essentially
supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is
responsible for the "uplift" of the cosmological constant to zero. We
investigate the case where the uplift is provided by a Fayet-Iliopoulos sector.
We find that in this case the modulus contribution to supersymmetry breaking is
larger than in the previous models. A first consequence of this class of
constructions is for gauginos, which are heavier compared to previous models.
In some of our explicit examples, due to a non-standard gauge-mediation type
negative contribution to scalars masses, the whole superpartner spectrum can be
efficiently compressed at low-energy. This provides an original phenomenology
testable at the LHC, in particular sleptons are generically heavier than the
squarks.Comment: 29 pages, 2 figure
- …