8 research outputs found

    From Architectured Materials to Large-Scale Additive Manufacturing

    Get PDF
    The classical material-by-design approach has been extensively perfected by materials scientists, while engineers have been optimising structures geometrically for centuries. The purpose of architectured materials is to build bridges across themicroscale ofmaterials and themacroscale of engineering structures, to put some geometry in the microstructure. This is a paradigm shift. Materials cannot be considered monolithic anymore. Any set of materials functions, even antagonistic ones, can be envisaged in the future. In this paper, we intend to demonstrate the pertinence of computation for developing architectured materials, and the not-so-incidental outcome which led us to developing large-scale additive manufacturing for architectural applications

    Building Applications Using Lost Formworks Obtained ThroughLarge-Scale Additive Manufacturing of Ultra-High-Performance Concrete

    Get PDF
    International audienceIn this chapter a new additive manufacturing (AM) processing route is introduced for ultra-high-performance concrete. Interdisciplinary work involving materials science, computation, robotics, architecture, and design resulted in the development of an innovative way of 3D cementitious material printing. The 3D printing process involved is based on a fused deposition modeling-like technique, in the sense that a material is deposited layer by layer through an extrusion printhead mounted on a six-axis robotic arm. The mechanical properties of 3D-printed materials are then assessed. The proposed technology succeeds in solving many of the problems that can be found in the literature. Most notably, this process allows the production of 3D large-scale complex geometries without the use of temporary supports, as opposed to 2.5D examples found in the literature for 3D concrete printing. Architectural cases of application are used as examples in order to demonstrate the potentialities of this innovative technology. Two structural elements were produced and constitute some of the largest 3D-printed concrete parts available until now. Multifunctionality was enabled for both structural elements by taking advantage of the complex geometry which can be achieved using our technology for large-scale AM
    corecore