1,005 research outputs found
Polynomial kernels for 3-leaf power graph modification problems
A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are
V and such that (u,v) is an edge iff u and v are at distance at most 3 in T.
The 3-leaf power graph edge modification problems, i.e. edition (also known as
the closest 3-leaf power), completion and edge-deletion, are FTP when
parameterized by the size of the edge set modification. However polynomial
kernel was known for none of these three problems. For each of them, we provide
cubic kernels that can be computed in linear time for each of these problems.
We thereby answer an open problem first mentioned by Dom, Guo, Huffner and
Niedermeier (2005).Comment: Submitte
Dark Matter Halo Structure in CDM Hydrodynamical Simulations
We have carried out a comparative analysis of the properties of dark matter
halos in N-body and hydrodynamical simulations. We analyze their density
profiles, shapes and kinematical properties with the aim of assessing the
effects that hydrodynamical processes might produce on the evolution of the
dark matter component. The simulations performed allow us to reproduce dark
matter halos with high resolution, although the range of circular velocities is
limited. We find that for halos with circular velocities of at the virial radius, the presence of baryons affects the evolution of
the dark matter component in the central region modifying the density profiles,
shapes and velocity dispersions. We also analyze the rotation velocity curves
of disk-like structures and compare them with observational results.Comment: 28 pages, 15 figures (figures 3ab sent by request), 2 tables.
Accepted for publication MNRA
From aptamer-based biomarker discovery to diagnostic and clinical applications: an aptamer-based, streamlined multiplex proteomic assay
Recently, we reported an aptamer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated. We demonstrate that quantification by microarray-based hybridization, Luminex bead-based methods, and qPCR are each compatible with our platform, further expanding the breadth of proteomic applications for a wide user community
On Structural Parameterizations of Hitting Set: Hitting Paths in Graphs Using 2-SAT
Hitting Set is a classic problem in combinatorial optimization. Its input
consists of a set system F over a finite universe U and an integer t; the
question is whether there is a set of t elements that intersects every set in
F. The Hitting Set problem parameterized by the size of the solution is a
well-known W[2]-complete problem in parameterized complexity theory. In this
paper we investigate the complexity of Hitting Set under various structural
parameterizations of the input. Our starting point is the folklore result that
Hitting Set is polynomial-time solvable if there is a tree T on vertex set U
such that the sets in F induce connected subtrees of T. We consider the case
that there is a treelike graph with vertex set U such that the sets in F induce
connected subgraphs; the parameter of the problem is a measure of how treelike
the graph is. Our main positive result is an algorithm that, given a graph G
with cyclomatic number k, a collection P of simple paths in G, and an integer
t, determines in time 2^{5k} (|G| +|P|)^O(1) whether there is a vertex set of
size t that hits all paths in P. It is based on a connection to the 2-SAT
problem in multiple valued logic. For other parameterizations we derive
W[1]-hardness and para-NP-completeness results.Comment: Presented at the 41st International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2015. (The statement of Lemma 4 was
corrected in this update.
Parameterized Algorithms for Modular-Width
It is known that a number of natural graph problems which are FPT
parameterized by treewidth become W-hard when parameterized by clique-width. It
is therefore desirable to find a different structural graph parameter which is
as general as possible, covers dense graphs but does not incur such a heavy
algorithmic penalty.
The main contribution of this paper is to consider a parameter called
modular-width, defined using the well-known notion of modular decompositions.
Using a combination of ILPs and dynamic programming we manage to design FPT
algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path
and Hamiltonian cycle), which are W-hard for both clique-width and its recently
introduced restriction, shrub-depth. We thus argue that modular-width occupies
a sweet spot as a graph parameter, generalizing several simpler notions on
dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with
arXiv:1304.5479 by other author
An FPT 2-Approximation for Tree-Cut Decomposition
The tree-cut width of a graph is a graph parameter defined by Wollan [J.
Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut
decompositions. In certain cases, tree-cut width appears to be more adequate
than treewidth as an invariant that, when bounded, can accelerate the
resolution of intractable problems. While designing algorithms for problems
with bounded tree-cut width, it is important to have a parametrically tractable
way to compute the exact value of this parameter or, at least, some constant
approximation of it. In this paper we give a parameterized 2-approximation
algorithm for the computation of tree-cut width; for an input -vertex graph
and an integer , our algorithm either confirms that the tree-cut width
of is more than or returns a tree-cut decomposition of certifying
that its tree-cut width is at most , in time .
Prior to this work, no constructive parameterized algorithms, even approximated
ones, existed for computing the tree-cut width of a graph. As a consequence of
the Graph Minors series by Robertson and Seymour, only the existence of a
decision algorithm was known.Comment: 17 pages, 3 figure
Approximation Algorithms for the Capacitated Domination Problem
We consider the {\em Capacitated Domination} problem, which models a
service-requirement assignment scenario and is also a generalization of the
well-known {\em Dominating Set} problem. In this problem, given a graph with
three parameters defined on each vertex, namely cost, capacity, and demand, we
want to find an assignment of demands to vertices of least cost such that the
demand of each vertex is satisfied subject to the capacity constraint of each
vertex providing the service. In terms of polynomial time approximations, we
present logarithmic approximation algorithms with respect to different demand
assignment models for this problem on general graphs, which also establishes
the corresponding approximation results to the well-known approximations of the
traditional {\em Dominating Set} problem. Together with our previous work, this
closes the problem of generally approximating the optimal solution. On the
other hand, from the perspective of parameterization, we prove that this
problem is {\it W[1]}-hard when parameterized by a structure of the graph
called treewidth. Based on this hardness result, we present exact
fixed-parameter tractable algorithms when parameterized by treewidth and
maximum capacity of the vertices. This algorithm is further extended to obtain
pseudo-polynomial time approximation schemes for planar graphs
Tight Kernel Bounds for Problems on Graphs with Small Degeneracy
In this paper we consider kernelization for problems on d-degenerate graphs,
i.e. graphs such that any subgraph contains a vertex of degree at most .
This graph class generalizes many classes of graphs for which effective
kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and
H-topological-minor free graphs. We show that for several natural problems on
d-degenerate graphs the best known kernelization upper bounds are essentially
tight.Comment: Full version of ESA 201
A Multivariate Approach for Checking Resiliency in Access Control
In recent years, several combinatorial problems were introduced in the area
of access control. Typically, such problems deal with an authorization policy,
seen as a relation , where means that
user is authorized to access resource . Li, Tripunitara and Wang (2009)
introduced the Resiliency Checking Problem (RCP), in which we are given an
authorization policy, a subset of resources , as well as
integers , and . It asks whether upon removal of
any set of at most users, there still exist pairwise disjoint sets of
at most users such that each set has collectively access to all resources
in . This problem possesses several parameters which appear to take small
values in practice. We thus analyze the parameterized complexity of RCP with
respect to these parameters, by considering all possible combinations of . In all but one case, we are able to settle whether the problem is in
FPT, XP, W[2]-hard, para-NP-hard or para-coNP-hard. We also consider the
restricted case where for which we determine the complexity for all
possible combinations of the parameters
Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter
An important result in the study of polynomial-time preprocessing shows that
there is an algorithm which given an instance (G,k) of Vertex Cover outputs an
equivalent instance (G',k') in polynomial time with the guarantee that G' has
at most 2k' vertices (and thus O((k')^2) edges) with k' <= k. Using the
terminology of parameterized complexity we say that k-Vertex Cover has a kernel
with 2k vertices. There is complexity-theoretic evidence that both 2k vertices
and Theta(k^2) edges are optimal for the kernel size. In this paper we consider
the Vertex Cover problem with a different parameter, the size fvs(G) of a
minimum feedback vertex set for G. This refined parameter is structurally
smaller than the parameter k associated to the vertex covering number vc(G)
since fvs(G) <= vc(G) and the difference can be arbitrarily large. We give a
kernel for Vertex Cover with a number of vertices that is cubic in fvs(G): an
instance (G,X,k) of Vertex Cover, where X is a feedback vertex set for G, can
be transformed in polynomial time into an equivalent instance (G',X',k') such
that |V(G')| <= 2k and |V(G')| <= O(|X'|^3). A similar result holds when the
feedback vertex set X is not given along with the input. In sharp contrast we
show that the Weighted Vertex Cover problem does not have a polynomial kernel
when parameterized by the cardinality of a given vertex cover of the graph
unless NP is in coNP/poly and the polynomial hierarchy collapses to the third
level.Comment: Published in "Theory of Computing Systems" as an Open Access
publicatio
- …
