94 research outputs found

    Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats

    Get PDF
    Afferent somatosensory activity from the spinal cord has a profound impact on the activity of the brain. Here we investigated the effects of spinal stimulation using direct current, delivered at the thoracic level, on the spontaneous activity and on the somatosensory evoked potentials of the gracile nucleus, which is the main entry point for hindpaw somatosensory signals reaching the brain from the dorsal columns, and of the primary somatosensory cortex in anaesthetized rats. Anodal spinal direct current stimulation (sDCS) increased the spontaneous activity and decreased the amplitude of evoked responses in the gracile nucleus, whereas cathodal sDCS produced the opposite effects. At the level of the primary somatosensory cortex, the changes in spontaneous activity induced by sDCS were consistent with the effects observed in the gracile nucleus, but the changes in cortical evoked responses were more variable and state dependent. Therefore, sDCS can modulate in a polarity-specific manner the supraspinal activity of the somatosensory system, offering a versatile bottom-up neuromodulation technique that could potentially be useful in a number of clinical applications

    Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy

    Get PDF
    Introduction: Neurofascin, encoded by NFASC, is a transmembrane protein that plays an essential role in nervous system development and node of Ranvier function. Anti-Neurofascin autoantibodies cause a specific type of chronic inflammatory demyelinating polyneuropathy (CIDP) often characterized by cerebellar ataxia and tremor. Recently, homozygous NFASC mutations were recently associated with a neurodevelopmental disorder in two families. Methods: A combined approach of linkage analysis and whole-exome sequencing was performed to find the genetic cause of early-onset cerebellar ataxia and demyelinating neuropathy in two siblings from a consanguineous Italian family. Functional studies were conducted on neurons from induced pluripotent stem cells (iPSCs) generated from the patients. Results: Genetic analysis revealed a homozygous p.V1122E mutation in NFASC. This mutation, affecting a highly conserved hydrophobic transmembrane domain residue, led to significant loss of Neurofascin protein in the iPSC-derived neurons of affected siblings. Conclusions: The identification of NFASC mutations paves the way for genetic research in the developing field of nodopathies, an emerging pathological entity involving the nodes of Ranvier, which are associated for the first time with a hereditary ataxia syndrome with neuropathy

    Subclinical Leber's hereditary optic neuropathy with pediatric acute spinal cord onset: More than meets the eye

    Get PDF
    Background: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by visual loss consequent to optic nerve atrophy. In some cases, LHON is associated with heterogeneous neurological extraocular manifestations and is referred to as "Leber plus disease"; rarely it is associated with a multiple sclerosis (MS)-like syndrome known as Harding disease, but no pediatric extraocular acute spinal onset is reported. Case presentation: We describe the case of a 5-year-old girl carrying the G3460A mtDNA mutation who was referred to clinical examination for bilateral upper and lower limb weakness with no sign of optic neuropathy. Spinal cord MRI showed hyperintense signal alterations in T2-weighted and restricted diffusion in DWI sequences in the anterior portion of the cervical and dorsal spinal cord resembling a spinal cord vascular injury. No association between this mutation and pediatric spinal cord lesions has previously been reported. Alternative diagnostic hypotheses, including infective, ischemic and inflammatory disorders, were not substantiated by clinical and instrumental investigations. Conclusions: Our case reports a novel pediatric clinical manifestation associated with the m.3460G > A mtDNA mutation, broadening the clinical spectrum of this disease. Early identification of new cases and monitoring of carriers beginning in childhood is important to prevent neurological deterioration and preserve long-term function

    Contribution of ultrarare variants in mTOR pathway genes to sporadic focal epilepsies

    Get PDF
    Objective: We investigated the contribution to sporadic focal epilepsies (FE) of ultrarare variants in genes coding for the components of complexes regulating mechanistic Target Of Rapamycin (mTOR)complex 1 (mTORC1). Methods: We collected genetic data of 121 Italian isolated FE cases and 512 controls by Whole Exome Sequencing (WES) and single-molecule Molecular Inversion Probes (smMIPs) targeting 10 genes of the GATOR1, GATOR2, and TSC complexes. We collapsed \u201cqualifying\u201d variants (ultrarare and predicted to be deleterious or loss of function) across the examined genes and sought to identify their enrichment in cases compared to controls. Results: We found eight qualifying variants in cases and nine in controls, demonstrating enrichment in FE patients (P = 0.006; exact unconditional test, one-tailed). Pathogenic variants were identified in DEPDC5 and TSC2, both major genes for Mendelian FE syndromes. Interpretation: Our findings support the contribution of ultrarare variants in genes in the mTOR pathway complexes GATOR and TSC to the risk of sporadic FE and a shared genetic basis between rare and common epilepsies. The identification of a monogenic etiology in isolated cases, most typically encountered in clinical practice, may offer to a broader community of patients the perspective of precision therapies directed by the underlying genetic cause

    Mutations in CYP2U1, DDHD2 and GBA2 genes are rare causes of complicated forms of hereditary spastic paraparesis

    Get PDF
    Complicated hereditary spastic paraplegias (HSP) are a heterogeneous group of HSP characterized by spasticity associated with a variable combination of neurologic and extra-neurologic signs and symptoms. Among them, HSP with thin corpus callosum and intellectual disability is a frequent subtype, often inherited as a recessive trait (ARHSP-TCC). Within this heterogeneous subgroup, SPG11 and SPG15 represent the most frequent subtypes. We analyzed the mutation frequency of three genes associated with early-onset forms of ARHSP with and without TCC, CYP2U1/SPG56, DDHD2/SPG54 and GBA2/SPG46, in a large population of selected complicated HSP patients by using a combined approach of traditional-based and amplicon-based high-throughput pooled-sequencing. Three families with mutations were identified, one for each of the genes analyzed. Novel homozygous mutations were identified in CYP2U1 (c.1A>C/p.Met1?) and in GBA2 (c.2048G>C/ p.Gly683Arg), while the homozygous mutation found in DDHD2 (c.1978G>C/p.Asp660His) had been previously reported in a compound heterozygous state. The phenotypes associated with the CYP2U1 and DDHD2 mutations overlap the SPG56 and the SPG54 subtypes, respectively, with few differences. By contrast, the GBA2 mutated patients show phenotypes combining typical features of both the SPG46 subtype and the recessive ataxia form, with marked intrafamilial variability thereby expanding the spectrum of clinical entities associated with GBA2 mutations. Overall, each of three genes analyzed shows a low mutation frequency in a general population of complicated HSP (<1% for either CYP2U1 or DDHD2 and approximately 2% for GBA2 ). These findings underline once again the genetic heterogeneity of ARHSP-TCC and the clinical overlap between complicated HSP and the recessive ataxia syndromes

    International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: Statements and supporting evidence

    Get PDF
    Objective: This study was undertaken to develop consensus-based recommendations for the management of adult and pediatric patients with new onset refractory status epilepticus (NORSE)/febrile infection-related epilepsy syndrome (FIRES) based on best evidence and experience. Methods: The Delphi methodology was followed. A facilitator group of nine experts was established, who defined the scope, users, and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment, and research directions were generated, which were then rated on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was ≥7 and inappropriate if the median score was ≤3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. Results: Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: (1) disease characteristics; (2) diagnostic testing and sampling; (3) acute treatment; (4) treatment in the postacute phase; and (5) research, registries, and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. Significance: This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research

    Consensus protocol for EEG and amplitude-integrated EEG assessment and monitoring in neonates

    Get PDF
    The aim of this work is to establish inclusive guidelines on electroencephalography (EEG) applicable to all neonatal intensive care units (NICUs). Guidelines on ideal EEG monitoring for neonates are available, but there are significant barriers to their implementation in many centres around the world. These include barriers due to limited resources regarding the availability of equipment and technical and interpretive round-the-clock personnel. On the other hand, despite its limitations, amplitude-integrated EEG (aEEG) (previously called Cerebral Function Monitor [CFM]) is a common alternative used in NICUs. The Italian Neonatal Seizure Collaborative Network (INNESCO), working with all national scientific societies interested in the field of neonatal clinical neurophysiology, performed a systematic literature review and promoted interdisciplinary discussions among experts (neonatologists, paediatric neurologists, neurophysiologists, technicians) between 2017 and 2020 with the aim of elaborating shared recommendations. A consensus statement on videoEEG (vEEG) and aEEG for the principal neonatal indications was established. The authors propose a flexible frame of recommendations based on the complementary use of vEEG and aEEG applicable to the various neonatal units with different levels of complexity according to local resources and specific patient features. Suggestions for promoting cooperation between neonatologists, paediatric neurologists, and neurophysiologists, organisational restructuring, and teleneurophysiology implementation are provided
    • …
    corecore