1,197 research outputs found

    Short timescale behavior of colliding heavy nuclei at intermediate energies

    Full text link
    An Antisymmetrized Molecular Dynamics model is used to explore the collision of 114^{114}Cd projectiles with 92^{92}Mo target nuclei at E/A=50 MeV over a broad range in impact parameter. The atomic number (Z), velocity, and emission pattern of the reaction products are examined as a function of the impact parameter and the cluster recognition time. The non-central collisions are found to be essentially binary in character resulting in the formation of an excited projectile-like fragment (PLF∗^*) and target-like fragment (TLF∗^*). The decay of these fragments occurs on a short timescale, 100≤\let≤\le300 fm/c. The average excitation energy deduced for the PLF∗^* and TLF∗^* `saturates for mid-central collisions, 3.5≤\leb≤\le6 fm, with its magnitude depending on the cluster recognition time. For short cluster recognition times (t=150 fm/c), an average excitation energy as high as ≈\approx6 MeV is predicted. Short timescale emission leads to a loss of initial correlations and results in features such as an anisotropic emission pattern of both IMFs and alpha particles emitted from the PLF∗^* and TLF∗^* in peripheral collisions.Comment: 19 pages, 17 figure

    A Real-Time Path Planner for a Smart Wheelchair Using Harmonic Potentials and a Rubber Band Model

    Get PDF
    We present an efficient path planner for smart wheelchairs based on harmonic potential fields. While the use of harmonic fields can always guarantee finding an existing path, they are extremely computational intensive and a sufficiently detailed map of the environment may lead to an unfeasible solution for the path. Also, since our target application is for the navigation of a smart wheelchair, for people with severe disabilities, the path provided by the harmonic field is frequently too sharp and needs to be smoothened. In order to address the first problem, we propose a parallel algorithm implemented using Graphics Processor Units (GPUs) on the Compute Unified Device Architecture (CUDA) platform. And for the second problem, we developed a rubber band model that provides extra forces to be added to the attracting forces of the harmonic fields. This model assumes that the path is an elastic line, a rubber band, connecting the source and destination points. This rubber band simulates the internal tension forces trying to tighten the line. As the result section demonstrates, both the original path from the harmonic field alone and the path smoothened by the rubber band model have approximate the same length, but the first path contains many bumps, sharp angles, and zig-zags, while the second one provides a much more comfortable ride for the passenger of the wheelchair. Either one is executed in real-time, allowing the proposed method to be used for real navigation of smart wheelchairs

    3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation

    Get PDF
    This paper presents a method for multi-view 3D modeling of human bodies using virtual stereopsis. The algorithm expands and improves the method used in [5], but unlike that method, our approach does not require multiple calibrated cameras and/or carefully-positioned turn tables. Instead, an algorithm using SIFT feature extraction is employed and an accurate motion estimation is performed to calculate the position of virtual cameras around the object. That is, by employing a single pair of cameras mounted on a same tripod, our algorithm computes the relative pose between camera and object and creates virtual cameras from the consecutive images in the video sequence. Besides not requiring any special setup, another advantage of our method is in the simplicity to obtain denser models if necessary: by only increasing the number of sampled images during the object-camera motion. As the quantitative results presented here demonstrate, our method compares to the PMVS method, while it makes it much simpler and cost-effective to implement

    Subarachnoid haemorrhage secondary to traumatic intracranial aneurysm of the posterior cerebral circulation: case series and literature review

    Get PDF
    Background To identify the clinical features, rebleed risk, timing and method of diagnosis, complications and outcome for subarachnoid haemorrhage (SAH) from traumatic intracranial aneurysm (TICA) of the posterior circulation. Subjects included 26 patients aged 3–54 (mean 24.8). Methods Case series and literature search to identify all reported cases. Results In our series, two of three cases were fatal as a result of rebleed, and one case had a good outcome with no deficit, following prompt diagnosis and embolisation. Our key findings from the literature review were: 30.7 % of patients were age 16 and under; 88 % had an acute drop in consciousness, 46 % in a delayed manner; the mean time to diagnosis was 7.5 days; initial cerebrovascular imaging was normal in 23 %; the rebleed rate was 23 %; 61 % required emergency diversion of cerebrospinal fluid; 11 % developed vasospasm requiring treatment; 19.2 % had deficits that rendered them unable to live independently. The mortality rate was 27 %. Conclusions SAH from ruptured posterior circulation TICA is associated with significant morbidity and mortality. A high index of suspicion as well as prompt diagnosis, repeat imaging in selected cases, and treatment of any associated TICA can be crucial to a favourable outcome
    • …
    corecore