13,296 research outputs found

    Entanglement production by quantum error correction in the presence of correlated environment

    Full text link
    We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.Comment: 7 pages, 3 figures, published versio

    Influence of electromagnetic interferences on the gravimetric sensitivity of surface acoustic waveguides

    Full text link
    Surface acoustic waveguides are increasing in interest for (bio)chemical detection. The surface mass modification leads to measurable changes in the propagation properties of the waveguide. Among a wide variety of waveguides, Love mode has been investigated because of its high gravimetric sensitivity. The acoustic signal launched and detected in the waveguide by electrical transducers is accompanied by an electromagnetic wave; the interaction of the two signals, easily enhanced by the open structure of the sensor, creates interference patterns in the transfer function of the sensor. The influence of these interferences on the gravimetric sensitivity is presented, whereby the structure of the entire sensor is modelled. We show that electromagnetic interferences generate an error in the experimental value of the sensitivity. This error is different for the open and the closed loop configurations of the sensor. The theoretical approach is completed by the experimentation of an actual Love mode sensor operated under liquid in open loop configuration. The experiment indicates that the interaction depends on the frequency and the mass modifications.Comment: 28 pages, 8 figure

    Developments of the pinned photodiode terahertz rectifier

    Get PDF
    This paper presents we presents a development of the structure of the pinned photodiode terahertz rectifier, in which the metal whisker of the antenna is separated from the semiconductor by a silane oxide layer, in order to reduce the surface defectiveness. The rectifies is the basic component of an image detection system based on the structure of actual CMOS image detectors. The structure combines a nano-antenna, fabricated on the top of a standard image sensor, the rectifier, and the readout electronics. The rectifier device proposed has vertical extension of some tenths of nanometers, can be created at the foot of the nano-whisker at the end of the terahertz antenna, above the storage well

    Simultaneous surface acoustic wave and surface plasmon resonance measurements: electrodeposition and biological interactions monitoring

    Full text link
    We present results from an instrument combining surface acoustic wave (SAW) propagation and surface plasmon resonance (SPR) measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15\pm15 cm2/gcm^2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain respectively 4.7±\pm0.7 nm and 75±\pm15%.Comment: 13 pages, 4 figure

    Work fluctuations in bosonic Josephson junctions

    Get PDF
    We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes

    Berry phase for a spin 1/2 in a classical fluctuating field

    Full text link
    The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with a adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio

    Collective decoherence of cold atoms coupled to a Bose-Einstein condensate

    Full text link
    We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system is here studied exactly, i.e., not in terms of a Markovian master equation. The dynamics of one and two impurities is remarkably different in respect of the standard decoherence of the spin - boson system. In particular we show: i) the appearance of coherence oscillations, i) the presence of super and sub decoherent states which differ from the standard ones of the spin boson model, and iii) the persistence of coherence in the system at long times. We show that this behaviour is due to the fact that the pseudospins have an internal spatial structure. We argue that collective decoherence also prompts information about the correlation length of the environment. In a one dimensional configuration one can change even stronger the qualitative behaviour of the dephasing just by tuning the interaction of the bath.Comment: 18 pages, 6 figures, two references adde

    Stochastic dynamics beyond the weak coupling limit: thermalization

    Full text link
    We discuss the structure and asymptotic long-time properties of coupled equations for the moments of a Brownian particle's momentum derived microscopically beyond the lowest approximation in the weak coupling parameter. Generalized fluctuation-dissipation relations are derived and shown to ensure convergence to thermal equilibrium at any order of perturbation theory.Comment: 6+ page

    Stylish UV-C lamp for disinfecting household objects

    Get PDF
    In this study, UV-C device proved to be a valuable tool for disinfecting household items and enhancing safety for everyday healt

    Collective Decoherence of Nuclear Spin Clusters

    Full text link
    The problem of dipole-dipole decoherence of nuclear spins is considered for strongly entangled spin cluster. Our results show that its dynamics can be described as the decoherence due to interaction with a composite bath consisting of fully correlated and uncorrelated parts. The correlated term causes the slower decay of coherence at larger times. The decoherence rate scales up as a square root of the number of spins giving the linear scaling of the resulting error. Our theory is consistent with recent experiment reported in decoherence of correlated spin clusters.Comment: 4 pages, 4 figure
    • …
    corecore