9 research outputs found

    Staphylococcus aureus RNAIII Binds to Two Distant Regions of coa mRNA to Arrest Translation and Promote mRNA Degradation

    Get PDF
    Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation

    Ribosome initiating translation of the hbs mRNA protect it from 5'-to-3' exoribonucleolytic degradation by RNase J1

    No full text
    International audienc

    Decay of a Model mRNA in Bacillus subtilis by a Combination of RNase J1 5′ Exonuclease and RNase Y Endonuclease Activities ▿ †

    No full text
    The involvement of the recently characterized 5′ exonuclease activity of RNase J1 and endonuclease activity of RNase Y in the turnover of ΔermC mRNA in Bacillus subtilis was investigated. Evidence is presented that both of these activities determine the half-life of ΔermC mRNA

    An overview of RNAs with regulatory functions in gram-positive bacteria

    No full text
    corecore