10,989 research outputs found
Unified first law of black-hole dynamics and relativistic thermodynamics
A unified first law of black-hole dynamics and relativistic thermodynamics is
derived in spherically symmetric general relativity. This equation expresses
the gradient of the active gravitational energy E according to the Einstein
equation, divided into energy-supply and work terms. Projecting the equation
along the flow of thermodynamic matter and along the trapping horizon of a
blackhole yield, respectively, first laws of relativistic thermodynamics and
black-hole dynamics. In the black-hole case, this first law has the same form
as the first law of black-hole statics, with static perturbations replaced by
the derivative along the horizon. There is the expected term involving the area
and surface gravity, where the dynamic surface gravity is defined as in the
static case but using the Kodama vector and trapping horizon. This surface
gravity vanishes for degenerate trapping horizons and satisfies certain
expected inequalities involving the area and energy. In the thermodynamic case,
the quasi-local first law has the same form, apart from a relativistic factor,
as the classical first law of thermodynamics, involving heat supply and
hydrodynamic work, but with E replacing the internal energy. Expanding E in the
Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy,
gravitational potential energy and thermal energy. There is also a weak type of
unified zeroth law: a Gibbs-like definition of thermal equilibrium requires
constancy of an effective temperature, generalising the Tolman condition and
the particular case of Hawking radiation, while gravithermal equilibrium
further requires constancy of surface gravity. Finally, it is suggested that
the energy operator of spherically symmetric quantum gravity is determined by
the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra
A Cosmological Constant Limits the Size of Black Holes
In a space-time with cosmological constant and matter satisfying
the dominant energy condition, the area of a black or white hole cannot exceed
. This applies to event horizons where defined, i.e. in an
asymptotically deSitter space-time, and to outer trapping horizons (cf.
apparent horizons) in any space-time. The bound is attained if and only if the
horizon is identical to that of the degenerate `Schwarzschild-deSitter'
solution. This yields a topological restriction on the event horizon, namely
that components whose total area exceeds cannot merge. We
discuss the conjectured isoperimetric inequality and implications for the
cosmic censorship conjecture.Comment: 10 page
Generalized inverse mean curvature flows in spacetime
Motivated by the conjectured Penrose inequality and by the work of Hawking,
Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine
necessary conditions on flows of two-surfaces in spacetime under which the
Hawking quasilocal mass is monotone. We focus on a subclass of such flows which
we call uniformly expanding, which can be considered for null as well as for
spacelike directions. In the null case, local existence of the flow is
guaranteed. In the spacelike case, the uniformly expanding condition leaves a
1-parameter freedom, but for the whole family, the embedding functions satisfy
a forward-backward parabolic system for which local existence does not hold in
general. Nevertheless, we have obtained a generalization of the weak
(distributional) formulation of this class of flows, generalizing the
corresponding step of Huisken and Ilmanen's proof of the Riemannian Penrose
inequality.Comment: 21 pages, 1 figur
Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin
The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south
Construction and enlargement of traversable wormholes from Schwarzschild black holes
Analytic solutions are presented which describe the construction of a
traversable wormhole from a Schwarzschild black hole, and the enlargement of
such a wormhole, in Einstein gravity. The matter model is pure radiation which
may have negative energy density (phantom or ghost radiation) and the
idealization of impulsive radiation (infinitesimally thin null shells) is
employed.Comment: 22 pages, 7 figure
Quasi-local first law of black-hole dynamics
A property well known as the first law of black hole is a relation among
infinitesimal variations of parameters of stationary black holes. We consider a
dynamical version of the first law, which may be called the first law of black
hole dynamics. The first law of black hole dynamics is derived without assuming
any symmetry or any asymptotic conditions. In the derivation, a definition of
dynamical surface gravity is proposed. In spherical symmetry it reduces to that
defined recently by one of the authors (SAH).Comment: Latex, 8 pages; version to appear in Class. Quantum Gra
An extreme critical space-time: echoing and black-hole perturbations
A homothetic, static, spherically symmetric solution to the massless
Einstein- Klein-Gordon equations is described. There is a curvature singularity
which is central, null, bifurcate and marginally trapped. The space-time is
therefore extreme in the sense of lying at the threshold between black holes
and naked singularities, just avoiding both. A linear perturbation analysis
reveals two types of dominant mode. One breaks the continuous self-similarity
by periodic terms reminiscent of discrete self-similarity, with echoing period
within a few percent of the value observed numerically in near-critical
gravitational collapse. The other dominant mode explicitly produces a black
hole, white hole, eternally naked singularity or regular dispersal, the latter
indicating that the background is critical. The black hole is not static but
has constant area, the corresponding mass being linear in the perturbation
amplitudes, explicitly determining a unit critical exponent. It is argued that
a central null singularity may be a feature of critical gravitational collapse.Comment: 6 revtex pages, 6 eps figure
Hamiltonians for Reduced Gravity
A generalised canonical formulation of gravity is devised for foliations of
spacetime with codimension . The new formalism retains n-dimensional
covariance and is especially suited to 2+2 decompositions of spacetime. It is
also possible to use the generalised formalism to obtain boundary contributions
to the 3+1 Hamiltonian.Comment: 18 pages, revtex, 3 postscript figures include
Spacetimes foliated by Killing horizons
It seems to be expected, that a horizon of a quasi-local type, like a Killing
or an isolated horizon, by analogy with a globally defined event horizon,
should be unique in some open neighborhood in the spacetime, provided the
vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our
paper is to verify whether that intuition is correct. If one can extend a so
called Kundt metric, in such a way that its null, shear-free surfaces have
spherical spacetime sections, the resulting spacetime is foliated by so called
non-expanding horizons. The obstacle is Kundt's constraint induced at the
surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement
that a solution be globally defined on the sphere. We derived a transformation
(reflection) that creates a solution to Kundt's constraint out of data defining
an extremal isolated horizon. Using that transformation, we derived a class of
exact solutions to the Einstein or Einstein-Maxwell equations of very special
properties. Each spacetime we construct is foliated by a family of the Killing
horizons. Moreover, it admits another, transversal Killing horizon. The
intrinsic and extrinsic geometry of the transversal Killing horizon coincides
with the one defined on the event horizon of the extremal Kerr-Newman solution.
However, the Killing horizon in our example admits yet another Killing vector
tangent to and null at it. The geometries of the leaves are given by the
reflection.Comment: LaTeX 2e, 13 page
- …