10,989 research outputs found

    Unified first law of black-hole dynamics and relativistic thermodynamics

    Full text link
    A unified first law of black-hole dynamics and relativistic thermodynamics is derived in spherically symmetric general relativity. This equation expresses the gradient of the active gravitational energy E according to the Einstein equation, divided into energy-supply and work terms. Projecting the equation along the flow of thermodynamic matter and along the trapping horizon of a blackhole yield, respectively, first laws of relativistic thermodynamics and black-hole dynamics. In the black-hole case, this first law has the same form as the first law of black-hole statics, with static perturbations replaced by the derivative along the horizon. There is the expected term involving the area and surface gravity, where the dynamic surface gravity is defined as in the static case but using the Kodama vector and trapping horizon. This surface gravity vanishes for degenerate trapping horizons and satisfies certain expected inequalities involving the area and energy. In the thermodynamic case, the quasi-local first law has the same form, apart from a relativistic factor, as the classical first law of thermodynamics, involving heat supply and hydrodynamic work, but with E replacing the internal energy. Expanding E in the Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy, gravitational potential energy and thermal energy. There is also a weak type of unified zeroth law: a Gibbs-like definition of thermal equilibrium requires constancy of an effective temperature, generalising the Tolman condition and the particular case of Hawking radiation, while gravithermal equilibrium further requires constancy of surface gravity. Finally, it is suggested that the energy operator of spherically symmetric quantum gravity is determined by the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra

    A Cosmological Constant Limits the Size of Black Holes

    Full text link
    In a space-time with cosmological constant Λ>0\Lambda>0 and matter satisfying the dominant energy condition, the area of a black or white hole cannot exceed 4π/Λ4\pi/\Lambda. This applies to event horizons where defined, i.e. in an asymptotically deSitter space-time, and to outer trapping horizons (cf. apparent horizons) in any space-time. The bound is attained if and only if the horizon is identical to that of the degenerate `Schwarzschild-deSitter' solution. This yields a topological restriction on the event horizon, namely that components whose total area exceeds 4π/Λ4\pi/\Lambda cannot merge. We discuss the conjectured isoperimetric inequality and implications for the cosmic censorship conjecture.Comment: 10 page

    Generalized inverse mean curvature flows in spacetime

    Full text link
    Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike directions. In the null case, local existence of the flow is guaranteed. In the spacelike case, the uniformly expanding condition leaves a 1-parameter freedom, but for the whole family, the embedding functions satisfy a forward-backward parabolic system for which local existence does not hold in general. Nevertheless, we have obtained a generalization of the weak (distributional) formulation of this class of flows, generalizing the corresponding step of Huisken and Ilmanen's proof of the Riemannian Penrose inequality.Comment: 21 pages, 1 figur

    Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin

    Get PDF
    The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south

    Construction and enlargement of traversable wormholes from Schwarzschild black holes

    Full text link
    Analytic solutions are presented which describe the construction of a traversable wormhole from a Schwarzschild black hole, and the enlargement of such a wormhole, in Einstein gravity. The matter model is pure radiation which may have negative energy density (phantom or ghost radiation) and the idealization of impulsive radiation (infinitesimally thin null shells) is employed.Comment: 22 pages, 7 figure

    Quasi-local first law of black-hole dynamics

    Get PDF
    A property well known as the first law of black hole is a relation among infinitesimal variations of parameters of stationary black holes. We consider a dynamical version of the first law, which may be called the first law of black hole dynamics. The first law of black hole dynamics is derived without assuming any symmetry or any asymptotic conditions. In the derivation, a definition of dynamical surface gravity is proposed. In spherical symmetry it reduces to that defined recently by one of the authors (SAH).Comment: Latex, 8 pages; version to appear in Class. Quantum Gra

    An extreme critical space-time: echoing and black-hole perturbations

    Get PDF
    A homothetic, static, spherically symmetric solution to the massless Einstein- Klein-Gordon equations is described. There is a curvature singularity which is central, null, bifurcate and marginally trapped. The space-time is therefore extreme in the sense of lying at the threshold between black holes and naked singularities, just avoiding both. A linear perturbation analysis reveals two types of dominant mode. One breaks the continuous self-similarity by periodic terms reminiscent of discrete self-similarity, with echoing period within a few percent of the value observed numerically in near-critical gravitational collapse. The other dominant mode explicitly produces a black hole, white hole, eternally naked singularity or regular dispersal, the latter indicating that the background is critical. The black hole is not static but has constant area, the corresponding mass being linear in the perturbation amplitudes, explicitly determining a unit critical exponent. It is argued that a central null singularity may be a feature of critical gravitational collapse.Comment: 6 revtex pages, 6 eps figure

    Hamiltonians for Reduced Gravity

    Get PDF
    A generalised canonical formulation of gravity is devised for foliations of spacetime with codimension n1n\ge1. The new formalism retains n-dimensional covariance and is especially suited to 2+2 decompositions of spacetime. It is also possible to use the generalised formalism to obtain boundary contributions to the 3+1 Hamiltonian.Comment: 18 pages, revtex, 3 postscript figures include

    Spacetimes foliated by Killing horizons

    Full text link
    It seems to be expected, that a horizon of a quasi-local type, like a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighborhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometry of the transversal Killing horizon coincides with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection.Comment: LaTeX 2e, 13 page
    corecore