11,223 research outputs found
Modeling of grating assisted standing wave microresonators for filter applications in integrated optics
A wide, multimode segment of a dielectric optical waveguide, enclosed by Bragg reflectors and evanescently coupled to adjacent port waveguides, can constitute the cavity in an integrated optical microresonator. It turns out that the device can be described adequately in terms of an approximate coupled mode theory model which involves only a few guided modes as basis fields. By reasoning along the coupled mode model, we motivate a simple design strategy for the resonator device. Rigorous two dimensional mode expansion simulations are applied to verify the predictions of the approximate model. The results exemplify the specific spectral response of the standing wave resonators. As refinements we discuss the single resonance of a device with nonsymmetrically detuned Bragg reflectors, and the cascading of two Fabry-Perot cavities, where the coupling across an intermediate shorter grating region establishes a power transfer characteristic that is suitable for an add-drop filter
Pion-mass dependence of three-nucleon observables
We use an effective field theory (EFT) which contains only short-range
interactions to study the dependence of a variety of three-nucleon observables
on the pion mass. The pion-mass dependence of input quantities in our
``pionless'' EFT is obtained from a recent chiral EFT calculation. To the order
we work at, these quantities are the 1S0 scattering length and effective range,
the deuteron binding energy, the 3S1 effective range, and the binding energy of
one three-nucleon bound state. The chiral EFT input we use has the inverse 3S1
and 1S0 scattering lengths vanishing at mpi_c=197.8577 MeV. At this
``critical'' pion mass, the triton has infinitely many excited states with an
accumulation point at the three-nucleon threshold. We compute the binding
energies of these states up to next-to-next-to-leading order in the pionless
EFT and study the convergence pattern of the EFT in the vicinity of the
critical pion mass. Furthermore, we use the pionless EFT to predict how doublet
and quartet nd scattering lengths depend on mpi in the region between the
physical pion mass and mpi=mpi_c.Comment: 24 pages, 9 figure
Effective field theory description of halo nuclei
Nuclear halos emerge as new degrees of freedom near the neutron and proton
driplines. They consist of a core and one or a few nucleons which spend most of
their time in the classically-forbidden region outside the range of the
interaction. Individual nucleons inside the core are thus unresolved in the
halo configuration, and the low-energy effective interactions are short-range
forces between the core and the valence nucleons. Similar phenomena occur in
clusters of He atoms, cold atomic gases near a Feshbach resonance, and some
exotic hadrons. In these weakly-bound quantum systems universal scaling laws
for s-wave binding emerge that are independent of the details of the
interaction. Effective field theory (EFT) exposes these correlations and
permits the calculation of non-universal corrections to them due to
short-distance effects, as well as the extension of these ideas to systems
involving the Coulomb interaction and/or binding in higher angular-momentum
channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo
nuclei, has been used to compute the properties of single-neutron, two-neutron,
and single-proton halos of s-wave and p-wave type. This review summarizes these
results for halo binding energies, radii, Coulomb dissociation, and radiative
capture, as well as the connection of these properties to scattering
parameters, thereby elucidating the universal correlations between all these
observables. We also discuss how Halo EFT's encoding of the long-distance
physics of halo nuclei can be used to check and extend ab initio calculations
that include detailed modeling of their short-distance dynamics.Comment: 104 pages, 31 figures. Topical Review for Journal of Physics G. v2
incorporates several modifications, particularly to the Introduction, in
response to referee reports. It also corrects multiple typos in the original
submission. It corresponds to the published versio
A study of commuter airplane design optimization
Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program
Orthogonality relations for triple modes at dielectric boundary surfaces
We work out the orthogonality relations for the set of Carniglia-Mandel
triple modes which provide a set of normal modes for the source-free
electromagnetic field in a background consisting of a passive dielectric
half-space and the vacuum, respectively. Due to the inherent computational
complexity of the problem, an efficient strategy to accomplish this task is
desirable, which is presented in the paper. Furthermore, we provide all main
steps for the various proofs pertaining to different combinations of triple
modes in the orthogonality integral.Comment: 15 page
Universal Properties of Two-Dimensional Boson Droplets
We consider a system of N nonrelativistic bosons in two dimensions,
interacting weakly via a short-range attractive potential. We show that for N
large, but below some critical value, the properties of the N-boson bound state
are universal. In particular, the ratio of the binding energies of (N+1)- and
N-boson systems, B_{N+1}/B_N, approaches a finite limit, approximately 8.567,
at large N. We also confirm previous results that the three-body system has
exactly two bound states. We find for the ground state B_3^(0) = 16.522688(1)
B_2 and for the excited state B_3^(1) = 1.2704091(1) B_2.Comment: 4 pages, 2 figures, final versio
Ascent control studies of the 049 and ATP parallel burn solid rocket motor shuttle configurations
The control authority approach is discussed as a major problem of the parallel burn soil shuttle configuration due to the many resulting system impacts regardless of the approach. The major trade studies and their results, which led to the recommendation of an SRB TVC control authority approach are presented
Electromagnetic properties of the Be-11 nucleus in Halo EFT
We compute electromagnetic properties of the Be-11 nucleus using an effective
field theory that exploits the separation of scales in this halo system. We fix
the parameters of the EFT from measured data on levels and scattering lengths
in the Be-10 plus neutron system. We then obtain predictions for the B(E1)
strength of the 1/2^+ to 1/2^- transition in the Be-11 nucleus. We also compute
the charge radius of the ground state of Be-11. Agreement with experiment
within the expected accuracy of a leading-order computation in this EFT is
obtained. We also indicate how higher-order corrections that affect both s-wave
and p-wave Be-10-neutron interactions will affect our results.Comment: 6 pages, 5 figures, contribution to the 19th Intl. IUPAP Conf. on
Few-Body Problems in Physics, Bonn, Germany, 2009. Typos fixe
- …