15,679 research outputs found
The Stellar Content of Obscured Galactic Giant H II Regions: II. W42
We present near infrared J, H, and K images and K-band spectroscopy in the
giant HII region W42. A massive star cluster is revealed; the color-color plot
and K-band spectroscopic morphology of two of the brighter objects suggest the
presence of young stellar objects. The spectrum of the bright central star is
similar to unobscured stars with MK spectral types of O5-O6.5. If this star is
on the zero age main sequence, then the derived spectrophotometric distance is
considerably smaller than previous estimates. The Lyman continuum luminosity of
the cluster is a few times that of the Trapezium. The slope of the K-band
luminosity function is similar to that for the Trapezium cluster and
significantly steeper than that for the massive star cluster in M17 or the
Arches cluster near the Galactic center.Comment: 30 pages, 11 figures, late
Low-velocity collision behaviour of clusters composed of sub-mm sized dust aggregates
The experiments presented aim to measure the outcome of collisions between
sub-mm sized protoplanetary dust aggregate analogues. We also observed the
clusters formed from these aggregates and their collision behaviour. The
experiments were performed at the drop tower in Bremen. The protoplanetary dust
analogue materials were micrometre-sized monodisperse and polydisperse SiO
particles prepared into aggregates with sizes between 120~m and
250~m. One of the dust samples contained aggregates that were previously
compacted through repeated bouncing. During three flights of 9~s of
microgravity each, individual collisions between aggregates and the formation
of clusters of up to a few millimetres in size were observed. In addition, the
collisions of clusters with the experiment cell walls leading to compaction or
fragmentation were recorded. We observed collisions amongst dust aggregates and
collisions between dust clusters and the cell aluminium walls at speeds ranging
from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred
ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with
an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to
1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and
fragmentation of clusters composed of dust aggregates colliding with the
aluminium cell walls, we derived a collision recipe for dust aggregates
(100 m) following the model of Dominik \& Thielens (1997) developed
for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J
and a critical breaking energy of 3.5x10-13 J for 100 m-sized
non-compacted aggregates.Comment: 12 pages, 13 figure
A Continuation Method for Nash Equilibria in Structured Games
Structured game representations have recently attracted interest as models
for multi-agent artificial intelligence scenarios, with rational behavior most
commonly characterized by Nash equilibria. This paper presents efficient, exact
algorithms for computing Nash equilibria in structured game representations,
including both graphical games and multi-agent influence diagrams (MAIDs). The
algorithms are derived from a continuation method for normal-form and
extensive-form games due to Govindan and Wilson; they follow a trajectory
through a space of perturbed games and their equilibria, exploiting game
structure through fast computation of the Jacobian of the payoff function. They
are theoretically guaranteed to find at least one equilibrium of the game, and
may find more. Our approach provides the first efficient algorithm for
computing exact equilibria in graphical games with arbitrary topology, and the
first algorithm to exploit fine-grained structural properties of MAIDs.
Experimental results are presented demonstrating the effectiveness of the
algorithms and comparing them to predecessors. The running time of the
graphical game algorithm is similar to, and often better than, the running time
of previous approximate algorithms. The algorithm for MAIDs can effectively
solve games that are much larger than those solvable by previous methods
Submillimetre-sized dust aggregate collision and growth properties
The collisional and sticking properties of sub-mm-sized aggregates composed
of protoplanetary dust analogue material are measured, including the
statistical threshold velocity between sticking and bouncing, their surface
energy and tensile strength within aggregate clusters. We performed an
experiment on the REXUS 12 suborbital rocket. The protoplanetary dust analogue
materials were micrometre-sized monodisperse and polydisperse SiO2 particles
prepared into aggregates with sizes around 120 m and 330 m,
respectively and volume filling factors around 0.37. During the experimental
run of 150 s under reduced gravity conditions, the sticking of aggregates and
the formation and fragmentation of clusters of up to a few millimetres in size
was observed. The sticking probability of the sub-mm-sized dust aggregates
could be derived for velocities decreasing from 22 to 3 cm/s. The transition
from bouncing to sticking collisions happened at 12.7 cm/s for the smaller
aggregates composed of monodisperse particles and at 11.5 and 11.7 cm/s for the
larger aggregates composed of mono- and polydisperse dust particles,
respectively. Using the pull-off force of sub-mm-sized dust aggregates from the
clusters, the surface energy of the aggregates composed of monodisperse dust
was derived to be 1.6x10-5 J/m2, which can be scaled down to 1.7x10-2 J/m2 for
the micrometre-sized monomer particles and is in good agreement with previous
measurements for silica particles. The tensile strengths of these aggregates
within the clusters were derived to be 1.9 Pa and 1.6 Pa for the small and
large dust aggregates, respectively. These values are in good agreement with
recent tensile strength measurements for mm-sized silica aggregates. Using our
data on the sticking-bouncing threshold, estimates of the maximum aggregate
size can be given. For a minimum mass solar nebula model, aggregates can reach
sizes of 1 cm.Comment: 21 pages (incl. 6 pages of appendix), 23 figure
Resonant Processes in a Frozen Gas
We present a theory of resonant processes in a frozen gas of atoms
interacting via dipole-dipole potentials that vary as , where is
the interatomic separation. We supply an exact result for a single atom in a
given state interacting resonantly with a random gas of atoms in a different
state. The time development of the transition process is calculated both on-
and off-resonance, and the linewidth with respect to detuning is obtained as a
function of time . We introduce a random spin Hamiltonian to model a dense
system of resonators and show how it reduces to the previous model in the limit
of a sparse system. We derive approximate equations for the average effective
spin, and we use them to model the behavior seen in the experiments of Anderson
et al. and Lowell et al. The approach to equilibrium is found to be
proportional to ), where the constant is explicitly related to the system's parameters.Comment: 30 pages, 6 figure
Quantum dynamics of the avian compass
The ability of migratory birds to orient relative to the Earth's magnetic
field is believed to involve a coherent superposition of two spin states of a
radical electron pair. However, the mechanism by which this coherence can be
maintained in the face of strong interactions with the cellular environment has
remained unclear. This Letter addresses the problem of decoherence between two
electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei.
Dynamics of the radical pair density matrix are derived and shown to yield a
simple mechanism for sensing magnetic field orientation. Rates of dephasing and
decoherence are calculated ab initio and found to yield millisecond coherence
times, consistent with behavioral experiments
- …
