37 research outputs found

    Efficient simulations with electronic open boundaries

    Get PDF
    We present a reformulation of the Hairy Probe method for introducing electronic open boundaries that is appropriate for steady state calculations involving non-orthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms, and a perfect non-orthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit, and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean inter-level spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene, and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π-conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current

    Nonlinear modes for the Gross-Pitaevskii equation -- demonstrative computation approach

    Full text link
    A method for the study of steady-state nonlinear modes for Gross-Pitaevskii equation (GPE) is described. It is based on exact statement about coding of the steady-state solutions of GPE which vanish as x→+∞x\to+\infty by reals. This allows to fulfill {\it demonstrative computation} of nonlinear modes of GPE i.e. the computation which allows to guarantee that {\it all} nonlinear modes within a given range of parameters have been found. The method has been applied to GPE with quadratic and double-well potential, for both, repulsive and attractive nonlinearities. The bifurcation diagrams of nonlinear modes in these cases are represented. The stability of these modes has been discussed.Comment: 21 pages, 6 figure

    Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons

    Get PDF
    The thermoelectric properties of hybrid graphene-boron nitride nanoribbons (BCNNRs) are investigated using the non-equilibrium Green's function (NEGF) approach. We find that the thermoelectric figure of merit (ZT) can be remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs with width index 3p+2 is enhanced up to 10~20 times while the ZT of nanoribbons with other widths is enhanced just by 1.5~3 times. As for zigzag-edge nanoribbons, the ZT is enhanced up to 2~3 times. This improvement comes from the combined increase in the Seebeck coefficient and the reduction in the thermal conductivity outweighing the decrease in the electrical conductance. In addition, the effect of component ratio of h-BN on the thermoelectric transport properties is discussed. These results qualify BCNNRs as a promising candidate for building outstanding thermoelectric devices.Comment: 21 pages, 7 figure

    Nonequilibrium Bose systems and nonground-state Bose-Einstein condensates

    Full text link
    The theory of resonant generation of nonground-state Bose-Einstein condensates is extended to Bose-condensed systems at finite temperature. The generalization is based on the notion of representative statistical ensembles for Bose systems with broken global gauge symmetry. Self-consistent equations are derived describing an arbitrary nonequilibrium nonuniform Bose system. The notion of finite-temperature topological coherent modes, coexisting with a cloud of noncondensed atoms, is introduced. It is shown that resonant generation of these modes is feasible for a gas of trapped Bose atoms at finite temperature.Comment: Latex file, 16 pages, no figure
    corecore