26,918 research outputs found
Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping
Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD
The recruitment and activation of phosphatidylinositol 4-phosphate 5-kinases α critically regulate CD28-dependent signaling responses
CD28 costimulatory receptor is a crucial determinant of the outcome of T lymphocyte activation. The engagement of CD28 by its natural ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional APC, lowers T cell receptor (TCR) activation threshold, thus leading to the enhancement of early signalling events necessary for efficient cytokine production, cell cycle progression, survival and regulation of T cells effector responses. CD28 is also able to act as a unique signalling receptor and to deliver TCR-independent autonomous signals, which account for its critical role in the regulation of pro-inflammatory cytokine/chemokine production and T cell survival. Most of the CD28-dependent signalling functions are initiated by the recruitment and activation of class IA phosphatidylinositol 3-kinase (PI3K), The intracytoplasmic domain of CD28 contains a N-terminal YMNM motif that following phosphorylation binds the p85 subunit of phosphatidylinositol 3-kinase (PI3K). Once activated, PI3K catalyzes the conversion of phosphatidylinositol 4,5-biphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3) and generates the docking sites for key signalling proteins. PIP2 plays a critical role in the regulation of both cytoskeleton dynamics and second messenger generation. Indeed, PIP2 is the common source for two major distinct signalling cascades involving PI3K and PLCγ1 that often colocalize in the same signalling complexes competing for the common pool of substrate. Consequently, PIP2 levels decrease following receptor activation, thus suggesting that stimulation of PIP2 synthesis may be an essential regulatory step to sustain the activation of both PI3K and PLCγ1 following CD28 engagement. The main biosynthetic pathway of PIP2 involves phosphorylation of phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring by PIP5K. Three PIP5K isoforms (α, β and γ) have been identified. Several data obtained in different cell systems evidenced differential subcellular localizations of each isoform. PIP5Kα, for instance, is localized at the plasma membrane, where it guarantees the local availability of PIP2.
Here we show that CD28 stimulation by both B7.1/CD80 or agonistic Abs induces the recruitment and activation of PIP5Kα in human primary CD4+ T lymphocytes. This event leads to the neo-synthesis of PIP2 that is consumed by CD28-activated PI3K. By either small interference RNA (siRNA)-driven cell silencing or overexpressing a kinase dead mutant, we evidenced that PIP5Kα activation is required for both CD28 autonomous signals regulating IL-8 gene expression as well as for CD28/TCR-induced Ca2+ mobilization, NF-AT nuclear translocation and IL-2 gene transcription. Our findings identify PIP5Kα as a critical mediator of CD28-dependent responses
Athermal Phase Separation of Self-Propelled Particles with no Alignment
We study numerically and analytically a model of self-propelled polar disks
on a substrate in two dimensions. The particles interact via isotropic
repulsive forces and are subject to rotational noise, but there is no aligning
interaction. As a result, the system does not exhibit an ordered state. The
isotropic fluid phase separates well below close packing and exhibits the large
number fluctuations and clustering found ubiquitously in active systems. Our
work shows that this behavior is a generic property of systems that are driven
out of equilibrium locally, as for instance by self propulsion.Comment: 5 pages, 4 figure
Rheology of fractal networks
We model the cytoskeleton as a fractal network by identifying each segment
with a simple Kelvin-Voigt element, with a well defined equilibrium length. The
final structure retains the elastic characteristics of a solid or a gel, which
may support stress, without relaxing. By considering a very simple regular
self-similar structure of segments in series and in parallel, in 1, 2 or 3
dimensions, we are able to express the viscoelasticity of the network as an
effective generalised Kelvin-Voigt model with a power law spectrum of
retardation times, . We relate the parameter
with the fractal dimension of the gel. In some regimes (), we
recover the weak power law behaviours of the elastic and viscous moduli with
the angular frequencies, , that occur in a variety of
soft materials, including living cells. In other regimes, we find different
power laws for and .Comment: 5 pages, 3 figure
Jamming Percolation and Glass Transitions in Lattice Models
A new class of lattice gas models with trivial interactions but constrained
dynamics are introduced. These are proven to exhibit a dynamical glass
transition: above a critical density, rho_c, ergodicity is broken due to the
appearance of an infinite spanning cluster of jammed particles. The fraction of
jammed particles is discontinuous at the transition, while in the unjammed
phase dynamical correlation lengths and timescales diverge as
exp[C(rho_c-rho)^(-mu)]. Dynamic correlations display two-step relaxation
similar to glass-formers and jamming systems.Comment: 4 pages, 2 figs. Final version accepted for publication in Phys. Rev.
Let
Enhanced diffusion and ordering of self-propelled rods
Starting from a minimal physical model of self propelled hard rods on a
substrate in two dimensions, we derive a modified Smoluchowski equation for the
system. Self -propulsion enhances longitudinal diffusion and modifies the mean
field excluded volume interaction. From the Smoluchowski equation we obtain
hydrodynamic equations for rod concentration, polarization and nematic order
parameter. New results at large scales are a lowering of the density of the
isotropic-nematic transition and a strong enhancement of boundary effects in
confined self-propelled systems.Comment: 4 pages, 2 figure
Explicit Formulas for Relaxed Disarrangement Densities Arising from Structured Deformations
Structured deformations provide a multiscale geometry that captures the
contributions at the macrolevel of both smooth geometrical changes and
non-smooth geometrical changes (disarrangements) at submacroscopic levels. For
each (first-order) structured deformation of a continuous body, the
tensor field is known to be a measure of deformations without
disarrangements, and is known to be a measure of deformations
due to disarrangements. The tensor fields and together deliver not only
standard notions of plastic deformation, but and its curl deliver the
Burgers vector field associated with closed curves in the body and the
dislocation density field used in describing geometrical changes in bodies with
defects. Recently, Owen and Paroni [13] evaluated explicitly some relaxed
energy densities arising in Choksi and Fonseca's energetics of structured
deformations [4] and thereby showed: (1) , the positive part of
, is a volume density of disarrangements due to submacroscopic
separations, (2) , the negative part of , is a volume density
of disarrangements due to submacroscopic switches and interpenetrations, and
(3) , the absolute value of , is a volume density of all three of
these non-tangential disarrangements: separations, switches, and
interpenetrations. The main contribution of the present research is to show
that a different approach to the energetics of structured deformations, that
due to Ba\'ia, Matias, and Santos [1], confirms the roles of ,
, and established by Owen and Paroni. In doing so, we give
an alternative, shorter proof of Owen and Paroni's results, and we establish
additional explicit formulas for other measures of disarrangements.Comment: 17 pages; http://cvgmt.sns.it/paper/2776
Oxygen content variation and cation doping dependence of (La)1.4(Sr1-yCay)1.6Mn2O7 (y = 0, 0.25, 0.5) bilayered manganites properties
The results of the synthesis and characterization of the optimally doped
(La)1.4(Sr1-yCay)1.6Mn2O7 solid solution with y=0, 0.25 and 0.5 are reported.
By progressively replacing the Sr with the smaller Ca, while keeping fixed the
hole-concentration due to the divalent dopant, the 'size effect' of the cation
itself on the structural, transport and magnetic properties of the bilayered
manganite has been analysed. Two different annealing treatments of the solid
solution, in pure oxygen and in pure argon, allowed also to study the effect of
the oxygen content variation. Structure and electronic properties of the
samples have been investigated by means of X-ray powder diffraction and X-ray
absorption spectroscopy measurements. Magnetoresistivity and static
magnetization measurements have been carried out to complete the samples
characterization. Oxygen annealing of the solid solution, that showed a limit
for about y=0.5, induces an increase of the Mn average valence state and a
transition of the crystal structure from tetragonal to orthorhombic while the
argon annealing induces an oxygen under-stoichiometry and, in turn, a reduction
of the Mn average valence state. Along with the Ca substitution, the
Jahn-Teller distortion of the MnO6 octahedra is reduced. This has been directly
connected to a general enhancement of the transport properties induced by the
Ca-doping. For the same cation composition, oxygen over-stoichiometry leads to
higher metal-insulator transition temperatures and lower resistivity values.
Curie temperatures (TC) reduce by increasing the Ca-doping. The lower TC for
all the annealed samples with respect to the 'as prepared' ones are connected
to the strong influence on the magnetic interaction of the point defects due to
the oxygen content variation.Comment: 49 pages, 13 figure
- …