20 research outputs found

    IRES-Mediated Translation of Utrophin A Is Enhanced by Glucocorticoid Treatment in Skeletal Muscle Cells

    Get PDF
    Glucocorticoids are currently the only drug treatment recognized to benefit Duchenne muscular dystrophy (DMD) patients. The nature of the mechanisms underlying the beneficial effects remains incompletely understood but may involve an increase in the expression of utrophin. Here, we show that treatment of myotubes with 6α−methylprednisolone-21 sodium succinate (PDN) results in enhanced expression of utrophin A without concomitant increases in mRNA levels thereby suggesting that translational regulation contributes to the increase. In agreement with this, we show that PDN treatment of cells transfected with monocistronic reporter constructs harbouring the utrophin A 5′UTR, causes an increase in reporter protein expression while leaving levels of reporter mRNAs unchanged. Using bicistronic reporter assays, we further demonstrate that PDN enhances activity of an Internal Ribosome Entry Site (IRES) located within the utrophin A 5′UTR. Analysis of polysomes demonstrate that PDN causes an overall reduction in polysome-associated mRNAs indicating that global translation rates are depressed under these conditions. Importantly, PDN causes an increase in the polysome association of endogenous utrophin A mRNAs and reporter mRNAs harbouring the utrophin A 5′UTR. Additional experiments identified a distinct region within the utrophin A 5′UTR that contains the inducible IRES activity. Together, these studies demonstrate that a translational regulatory mechanism involving increased IRES activation mediates, at least partially, the enhanced expression of utrophin A in muscle cells treated with glucocorticoids. Targeting the utrophin A IRES may thus offer an important and novel therapeutic avenue for developing drugs appropriate for DMD patients

    Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I

    Get PDF
    Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress

    NQO1-Dependent Redox Cycling of Idebenone: Effects on Cellular Redox Potential and Energy Levels

    Get PDF
    Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders

    An authoring system for ITS which is based on a generic level of tutoring strategies

    No full text

    Zooming on a Multiagent Simulation System: from the Conceptual Architecture to the Interaction Protocol

    No full text
    GEAMAS is a knowledge engineering environment for multi-agent simulation of complex systems. The basic architecture of GEAMAS is designed around three dimensions: MultiAgent Systems (MAS) software design, MAS knowledge abstraction and MAS services dimension. Each one of this third aspects, is implemented into several modular open software layers. First, the paper argues the benefits of a such architecture for a MAS environment. We especially present 1) how the MAS software design dimension enables to define appropriate tools levels for designing multi-agent systems 2) how MAS knowledge abstraction adds significant value to implement a computational model of agents 3) how MAS services dimension allows to correctly extend the GEAMAS environment by integrating new multi-agent concepts such as organization capacities or learning mechanisms. 1 . Introduction The multi-agent paradigm has been successfully applied to the development of simulation environments for geophysical natural phenome..

    GEAMAS V2.0: an Object Oriented Platform for Complex Systems Simulations.

    No full text
    This paper presents the object oriented design and implementation of GEAMAS V2.0, a toolkit for virtual simulations of complex systems. GEAMAS V2.0 is structured in three modules: the Kernel, the Generation Environment and the Simulation Environment. The Kernel implements an object model for agents and provides generic classes. The Generation Environment allows the graphical design of applications. The Simulation Environment enables the observation of the simulation's evolution via Graphical User Interface tools. The implementation uses Java 1.1. We applied GEAMAS V2.0 to the sand-pile automaton problem. This reference application, which is easily modeled with GEAMAS V2.0, provides a first validation of our system architecture and simulation mechanism. 1. Introduction The great complexity of natural systems constitutes a challenge for computer science modeling. This kind of tools is meant for researchers who need to validate complex models, without having to implement the whole applic..
    corecore