508 research outputs found

    Imaging and spectroscopy of Comet P/Halley

    Get PDF
    The goals of this investigation are the analysis of a large set of high-resolution echelle/reticon spectra, and the reduction and analysis of a set of narrow-band-filtered charge coupled device (CCD) images of Comet Halley taken during the preperihelion period at Oak Ridge Observatory by Dr. R. E. McCrosky. The scientific objectives associated with these goals are the determination of the spatial distributions of several important radicals, atoms and ions in the coma. These include C2, CN, C3, H2O(+) and CO(+) from the image data. The analysis of the neutral species distribution with Monte Carlo models will aid in the understanding of their production and decay mechanisms as well as serve as an important indicator of the physical conditions in the inner coma. The spatial distributions of the ions will serve as a guide to constrain the complex model necessary for understanding the interaction of the solar wind and the cometary ions. Work during this past year has been devoted largely to the reduction of the standard star photometry for the CCD image data set, as well as the re-flat-fielding of a number of the comet images. We are pleased to report that despite a number of setbacks and the small effort devoted to this work (2 1/2 months for the PI and a generous share of completely unsupported time by Dr. McCrosky) that this portion of the work has been successfully completed. The goals for the upcoming final year of this project (under a new project number) are to complete the calibration of the CCD image data for inclusion in the IHW archive, to analyze a select portion of the neutral radical images with our Monte Carlo models, and to present the results of the 6300/region spectra as a guide to low-resolution spectral observers in order to yield the unambiguous separation of the contributions of cometary O(1D), airglow O(1D), and the numerous NH2 lines in that region of the spectrum

    Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    Get PDF
    An algorithm for the random walk problem of multiple elastic collisions between newly formed non-thermal neutral cometary radicals and the outflowing cometary molecules was incorporated into the Monte Carlo particle-trajectory model. Preliminary model analysis has shown that the effects of collision on the observed spatial distribution of cometary radicals becomes important for the larger bright comets, especially at smaller values of the helicocentric distance. The model and early results are discussed herein

    Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    Get PDF
    The Monte Carlo particle trajectory model for the saptial distribution of cometary radicals was modified to include the heliocentric distance dependence of the parent molecule velocity, and the heliocentric velocity dependence for CN fluorescence and radiation pressure. Available data on the observed spatial distributions of cometary radicals were studied and a preliminary comparison of newly published data from previous studies is discussed

    Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    Get PDF
    Progress on modeling the spatial distributions of cometary radicals is described. The Monte Carlo particle-trajectory model was generalized to include the full time dependencies of initial comet expansion velocities, nucleus vaporization rates, photochemical lifetimes and photon emission rates which enter the problem through the comet's changing heliocentric distance and velocity. The effect of multiple collisions in the transition zone from collisional coupling to true free flow were also included. Currently available observations of the spatial distributions of the neutral radicals, as well as the latest available photochemical data were re-evaluated. Preliminary exploratory model results testing the effects of various processes on observable spatial distributions are also discussed

    Analysis of CCD images of the coma of comet P/Halley

    Get PDF
    The modeling analysis objective of this project is to make use of the skill acquired in the development of Monte Carlo particle trajectory models for the distributions of gas species in cometary comae as a basis for a new dust coma model. This model will include a self-consistent picture of the time-dependent dusty-gas dynamics of the inner coma and the three-dimensional time-dependent trajectories of the dust particles under the influence of solar gravity and solar radiation pressure in the outer coma. Our purpose is to use this model as a tool to analyze selected images from two sets of data of the comet P/Halley with the hope that we can help to understand the effects of a number of important processes on the spatial morphology of the observed dust coma. The study will proceed much in the same way as our study of the spatially extended hydrogen coma where we were able to understand the spatial morphology of the Lyman-alpha coma in terms of the partial thermalization of the hot H atoms produced by the photodissociation of cometary H2O and OH. The processes of importance to the observed dust coma include: (1) the dust particle size distribution function; (2) the terminal velocities of various sized dust particles in the inner coma; (3) the radiation scattering properties of dust particles, which are important both in terms of the observed scattered radiation and the radiation pressure acceleration on dust particles; (4) the fragmentation and/or vaporization of dust particles; (5) the relative importance of CHON and silicate dust particles as they contribute both to the dusty-gas dynamics in the inner coma (that produce the dust particle terminal velocities) and to the observed spatial morphology of the outer dust coma; and (6) the time and direction dependence of the source of dust

    Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    Get PDF
    Progress during the second year of a program of research on the modeling of the spatial distributions of cometary radicals is discussed herein in several major areas. New scale length laws for cometary C2 and CN were determined which explain that the previously-held apparent drop of the C2/CN ratio for large heliocentric distances does not exist and that there is no systematic variation. Monte Carlo particle trajectory model (MCPTM) analysis of sunward and anti-sunward brightness profiles of cometary C2 was completed. This analysis implies a lifetime of 31,000 seconds for the C2 parent and an ejection speed for C2 of approximately 0.5 km/sec upon dissociation from the parent. A systematic reanalysis of published C3 and OH data was begun. Preliminary results find a heliocentric distance dependence for C3 scale lengths with a much larger variation than for C2 and CN. Scale lengths for OH are generally somewhat larger than currently accepted values. The MCPTM was updated to include the coma temperature. Finally, the collaborative effort with the University of Arizona programs has yielded some preliminary CCD images of Comet P/Halley

    Extended atmospheres of outer planet satellites and comets

    Get PDF
    The new cometary hydrogen particle-trajectory model, completed last year, has been used successfully to analyze observations of Comet P/Giacobini-Zinner. The Pioneer Venus Orbiter Ultraviolet Spectrometer observed the comet at 1216 A (hydrogen Lyman-a) on 11 September 1985 when the comet was 1.03 AU from the Sun and 1.09 AU from Venus. The analysis implies a production rate at 1.03 AU 2.3 x 10 to the 28th power/sec of the water molecules which photodissociate to produce the observed hydrogen. An upper limit for the H2O production rate of Comet P/Halley of 5 x 10 to the 28th power/sec at 2.60 AU was also obtained from the Pioneer Venus instrument

    Extended atmospheres of outer planet satellites and comets

    Get PDF
    In the third year of this 3-year project, research accomplishments are discussed and related to the overall objective. In the area of the distribution of hydrogen in the Saturn system, new Voyager UVS data have been discovered and are discussed. The data suggest that both Titan's hydrogen torus and Saturn's hydrogen corona play a major role in the circumplanetary gas source. Modeling analysis of this new data establishes a strong basis for continuing studies to be undertaken in a new NASA-sponsored project. In the area of the cometary atmospheres, observational data for H, O, C, and OH acquired with the Pioneer Venus Orbiter are evaluated and preliminary modeling analysis for some of the hydrogen Lyman-alpha data is presented. In addition, the importance of collisional thermalization in spatial properties and structure of the inner and extended comae of comets has been demonstrated using the recently developed particle trajectory model. The successful simulation by this model of the hydrogen Lyman-alpha image for Comet Kohoutec near perihelion, an extreme case for collisional thermalization, is particularly noteworthy

    Extended atmospheres of outer planet satellites and comets

    Get PDF
    An analysis of the extended atmospheres of outer planet satellites and comets is made. Primary emphasis is placed on cometary atmospheres because of the return of Comet P/Halley. As part of a collaborative effort with A.I.F. Stewart, observations of the hydrogen coma of Comet P/Giacobini-Zinner obtained from the Pioneer Venus Orbiter ultraviolet spectrometer (PVOUVS) were successfully analyzed at AER and are reported. In addition, significant pre-modeling and post-modeling activities to support and analyze the PVOUVS observations of Comet P/Halley successfully acquired in late 1985 and early 1986 are also discussed. Progress in model preparation for third-year analysis of the Voyager UVS Lyman-alpha brightness distribution emitted by hydrogen atoms in the Saturn system is also summarized

    Analysis of IUE observations of hydrogen in comets

    Get PDF
    The large body of hydrogen Lyman-alpha observations of cometary comae obtained with the International Ultraviolet Explorer satellite has gone generally unanalyzed because of two main modeling complications. First, the inner comae of many bright (gas productive) comets are often optically thick to solar Lyman-alpha radiation. Second, even in the case of a small comet (low gas production) the large IUE aperture is quite small as compared with the immense size of the hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the coma is required to invert the inferred brightnesses to column densities and finally to H atom production rates. Our Monte Carlo particle trajectory model (MPTM), which for the first time provides the realistic full phase space distribution of H atoms throughout the coma was used as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H2O and OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize the velocity distribution of the H atoms. A new spherical radiative transfer calculation based on our MCPTM was developed to analyze IUE observations of optically thick H comae. The models were applied to observations of comets P/Giacobini-Zinner and P/Halley
    corecore