1,187 research outputs found

    Biphenotypic Sinonasal Sarcoma-Case Report and Review of Clinicopathological Features and Diagnostic Modalities.

    Get PDF
    Background Biphenotypic sinonasal sarcoma is a recently described malignancy showing dual differentiation with both myogenic and neural elements. Due to its histologic similarities to other sinonasal malignancies, it is a diagnostic challenge. Objective The main purpose of this article is to report a case of biphenotypic sinonasal sarcoma and to consolidate data and provide a comprehensive review regarding pathological differences between biphenotypic sarcoma and other sinonasal malignancies and diagnostic modalities used for biphenotypic sarcoma. Material and Methods A systematic review of all cases of biphenotypic sinonasal sarcoma was performed using electronic databases (PubMed and Medline). Data collected included age, gender, symptoms, sub-site of origin, immunophenotyping, metastasis, recurrence, treatment, duration of follow-up, and survival outcomes. Results Ninety-five cases of biphenotypic sarcoma were found with mean age at diagnosis of 52.36 years (range, 24-87 years). Female to male ratio was 2.27:1. Extra-sinonasal extension was present in 28%. Immunophenotyping revealed that S-100 and SMA (smooth muscle actin) were consistently positive, while SOX-10 was consistently negative. PAX3-MAML3 fusion [t (2; 4) (q35; q31.1)] was the most common genetic rearrangement. Surgical excision with or without adjuvant radiotherapy was the most frequent treatment modality used. Recurrence was observed in 32% of cases with follow-up. None of the cases reported metastasis. Three patients had died at the time of publication that included one case with intracranial extension. Conclusion Biphenotypic sarcoma is distinct sinonasal malignancy with unique clinicopathological features. Testing involving a battery of myogenic and neural immunomarkers is essential for diagnostic confirmation and is a clinically useful endeavor when clinical suspicion is high. © 2019 Georg Thieme Verlag KG Stuttgart. New York

    Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound Treatment at 1.5 T: A Retrospective Study on Treatment- and Patient-Related Parameters Obtained From 52 Procedures

    Get PDF
    Objective: To present a retrospective analysis of patient- and sonication-related parameters of a group of patients treated with a transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (tcMRgFUS) system integrated with a 1.5-T MRI unit. Methods: The data obtained from 59 patients, who underwent the tcMRgFUS procedure from January 2015 to April 2019, were retrospectively reviewed for this study. The following data, among others, were mainly collected: skull density ratio (SDR), skull area (SA), number of available transducer elements (Tx), and estimated focal power at target (FP). For each of the four different treatment stages, we calculated the number of sonication processes (S-n), user-defined sonication power (S-p), effective measured power (S-mp), sonication duration (S-d), user-defined energy (E), effective measured energy (E-m), maximum temperature (T-max), and MR thermometry plane orientation. Furthermore, the time delay between each sonication (S-t) and the total treatment time (T-t) were recorded. Results: Fifty-two patients (40 males and 12 females; age 64.51 +/- SD 11.90 years; range 26-86 years), who underwent unilateral Vim thalamotomy (left = 50, 96.15%; right = 2, 3.85%) for medication-refractory essential tremor (n = 39; 78%) or Parkinson tremor (n = 13; 22%) were considered. A total of 1,068 (95.10%) sonication processes were included in our final analysis (average S-n per treatment: 20.65 +/- 6.18; range 13-41). The energy released onto the planned target was found to decrease with the SDR for all temperature ranges. A positive correlation was observed between the slope of T-max vs. E-m plot and the SDR (R-2 = 0.765; p < 0.001). In addition, the T-max was positively correlated with SDR (R-2 = 0.398; p < 0.005). On the contrary, no significant correlation was found between SDR and SA or Tx. An analysis of the MR thermometry scanning plane indicated that, at our site, the axial and the coronal planes were used (on average) 10.4 (SD +/- 3.8) and 7.7 (SD +/- 3.0) times, respectively, whereas the sagittal plane was used only 2.5 (SD +/- 3.0) times per treatment. Conclusion: Our results confirm the factors that significantly influence the course of a tcMRgFUS procedure even when a 1.5-T MRI scanner is used for procedure guidance. The experience we gained in this study indicates that the SDR remains one of the most significant technical parameters to be considered in a tcMRgFUS procedure. The possibility of prospectively setting the sonication energy according to the presented curves of energy delivery as a function of SDR for each treatment stage could provide a further understanding and a greater awareness of this emerging technology

    An X-ray and Optical Investigation of the Starburst-driven Superwind in the Galaxy Merger Arp 299

    Get PDF
    We present a detailed investigation of the X-ray and optical properties of the starburst-merger system Arp299 (NGC 3690, Mrk 171), with an emphasis on its spectacular gaseous nebula. We analyse \rosat and \asca X-ray data and optical spectra and narrow-band images. We suggest that the on-going galaxy collision has tidally-redistributed the ISM of the merging galaxies. The optical emission-line nebula results as this gas is photoionized by radiation that escapes from the starburst, and is shock-heated, accelerated, and pressurized by a `superwind' driven by the collective effect of the starburst supernovae and stellar winds. The X-ray nebula in Arp 299 is is plausibly a mass-loaded flow of adiabatically-cooling gas that carries out a substantial fraction of the energy and metals injected by the starburst at close to the escape velocity from Arp 299. The mass outflow rate likely exceeds the star-formation rate in this system. We conclude that powerful starbursts are able to heat (and possibly eject) a significant fraction of the ISM in merging galaxies.Comment: 54 pages, 17 postscript figures, AAS late

    Search for Optical Pulsation in M82 X-2

    Get PDF
    We report on a search for optical pulsation from M82 X-2 over a range of periods. M82 X-2 is an X-ray pulsar with a 1.37s average spin period and a 2.5 day sinusoidal modulation. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 inch Hale telescope at the Palomar Observatory. We performed H test and χ^2 statistical analysis. No significant optical pulsations were found in the wavelength range of 3000–11000 Å with a pulsation period between 1.36262 and 1.37462 s. We found an upper limit on pulsed emission in the 4000–8000 Å wavelength range to be fainter than ~20.5 mag_(AB) , corresponding to ~23 μJy

    SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

    Get PDF
    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H2O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO2, C2O, C3O2, C3, C4O and CO3/C5. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, show that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO2, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C3O2 column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species

    On the relationships between tectonics and volcanism in the offshore Capo Vaticano, SE Tyrrhenian Sea, during the Plio-Pleistocene

    Get PDF
    High-resolution bathymetry and a grid of single-channel reflection seismic profiles (Sparker and Chirp) were recently recorded in a sector of the upper slope of Capo Vaticano (CV) promontory (Tyrrhenian coast, W Calabria) where forward and inverse modeling of previously acquired aeromagnetic data highlight the presence of a WNW©\ESE elongated, 20 km long and 3¨C5 km wide, magnetized body extending from sea floor to about 3 km below sea level. Magnetic properties of this body are consistent with those of the medium to highly evolved volcanic rocks of the Aeolian Arc (De Ritis et al., 2010). Forthwith offshore promontory, the bathymetry highlights a complex-shape seamount that develops along a WNW direction, orthogonally interrupted by NE-trending ridges (Loreto et al., 2013), the largest of which shows major- and minor-axes of ca. 11 and 2 km, respectively. Summit elevation is ca. 70 m. Several vented fluids points were imaged on top of the seamount by chirp profiles. The largest of which rises from seafloor up to 6/7 m within water column, assuming the acoustic water velocity of 1500 m/s. Two faults systems associated with extensional faults are mainly observed on seismic profiles. High-angle NW-trending normal faults, SW-dipping, formed along the continental slope connecting the south-west continental shelf of the CV promontory to the Gioia Tauro basin (Pepe et al., 2013). These faults generally have small displacements, up to 40 m, and are sealed by Pleistocene deposits. A NE-trending normal fault, SE-dipping, is also observed on both chirp and sparker profiles. Its length is estimate to be more than 30 km, partially borders the NE-trending ridge intersecting the NW-trending fault. Landward, another NE-trending normal fault affects Pliocene and lower Pleistocene, and is sealed by upper Pleistocene. The described new geophysical data lead to a re-examination of the magnetic anomaly field interpretation. In fact, the revealed NE-trending ridge encounters the CV NW-SE ridge just where the peak value of the Reduced-to-the-Pole magnetic anomaly lies. Therefore, the inherent source body is emplaced where the maximum fracturing occurs. This suggests highly magnetized material crystallized in a vertical conduit that fed a volcanic system, likely fault-controlled, surrounded by the almost not magnetized rocks of the Gioia and the Paola sedimentary basins and of the Arco Calabro Peloritano units

    Lobster eye optics for nano-satellite x-ray monitor

    Get PDF
    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT
    • …
    corecore