4,271 research outputs found

    Efficient Decomposition of Dense Matrices over GF(2)

    Full text link
    In this work we describe an efficient implementation of a hierarchy of algorithms for the decomposition of dense matrices over the field with two elements (GF(2)). Matrix decomposition is an essential building block for solving dense systems of linear and non-linear equations and thus much research has been devoted to improve the asymptotic complexity of such algorithms. In this work we discuss an implementation of both well-known and improved algorithms in the M4RI library. The focus of our discussion is on a new variant of the M4RI algorithm - denoted MMPF in this work -- which allows for considerable performance gains in practice when compared to the previously fastest implementation. We provide performance figures on x86_64 CPUs to demonstrate the viability of our approach

    Topologically massive gravito-electrodynamics: exact solutions

    Get PDF
    We construct two classes of exact solutions to the field equations of topologically massive electrodynamics coupled to topologically massive gravity in 2 + 1 dimensions. The self-dual stationary solutions of the first class are horizonless, asymptotic to the extreme BTZ black-hole metric, and regular for a suitable parameter domain. The diagonal solutions of the second class, which exist if the two Chern-Simons coupling constants exactly balance, include anisotropic cosmologies and static solutions with a pointlike horizon.Comment: 15 pages, LaTeX, no figure

    Consistent local projection stabilized finite element methods

    Get PDF
    This work establishes a formal derivation of local projection stabilized methods as a result of an enriched Petrov-Galerkin strategy for the Stokes problem. Both velocity and pressure finite element spaces are enhanced with solutions of residual-based local problems, and then the static condensation procedure is applied to derive new methods. The approach keeps degrees of freedom unchanged while gives rise to new stable and consistent methods for continuous and discontinuous approximation spaces for the pressure. The resulting methods do not need the use of a macro-element grid structure and are parameter-free. The numerical analysis is carried out showing optimal convergence in natural norms, and moreover, two ways of rendering the velocity field locally mass conservative are proposed. Some numerics validate the theoretical results

    A theorem on topologically massive gravity

    Get PDF
    We show that for three dimensional space-times admitting a hypersurface orthogonal Killing vector field Deser, Jackiw and Templeton's vacuum field equations of topologically massive gravity allow only the trivial flat space-time solution. Thus spin is necessary to support topological mass.Comment: published in Classical and Quantum Gravity 13 (1996) L2

    A symmetric nodal conservative finite element method for the Darcy equation

    Get PDF
    This work introduces and analyzes novel stable Petrov-Galerkin EnrichedMethods (PGEM) for the Darcy problem based on the simplest but unstable continuous P1/P0 pair. Stability is recovered inside a Petrov-Galerkin framework where element-wise dependent residual functions, named multi-scale functions, enrich both velocity and pressure trial spaces. Unlike the velocity test space that is augmented with bubble-like functions, multi-scale functions correct edge residuals as well. The multi-scale functions turn out to be the well-known lowest order Raviart-Thomas basis functions for the velocity and discontinuous quadratics polynomial functions for the pressure. The enrichment strategy suggests the way to recover the local mass conservation property for nodal-based interpolation spaces. We prove that the method and its symmetric version are well-posed and achieve optimal error estimates in natural norms. Numerical validations confirm claimed theoretical results

    Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass

    Full text link
    High-resolution Brillouin scattering is used to achieve 3-dimensional maps of the longitudinal acoustic mode frequency shift in soda-lime silicate glasses subject to Vickers indentations. Assuming that residual stress-induced effects are simply proportional to density changes, residual densification fields are obtained. The density gradient is nearly isotropic, confirming earlier optical observations made on a similar glass. The results show that Brillouin micro-spectroscopy opens the way to a fully quantitative comparison of experimental data with predictions of mechanical models for the identification of a constitutive law.Comment: 4 pages, 3 figures, revised version, to appear in Appl. Phys. Let

    Black hole mass and angular momentum in 2+1 gravity

    Get PDF
    We propose a new definition for the mass and angular momentum of neutral or electrically charged black holes in 2+1 gravity with two Killing vectors. These finite conserved quantities, associated with the SL(2,R) invariance of the reduced mechanical system, are shown to be identical to the quasilocal conserved quantities for an improved gravitational action corresponding to mixed boundary conditions. They obey a general Smarr-like formula and, in all cases investigated, are consistent with the first law of black hole thermodynamics. Our framework is applied to the computation of the mass and angular momentum of black hole solutions to several field-theoretical models.Comment: 23 pages, 3 references added, to be published in Physical Review

    Density modulations in an elongated Bose-Einstein condensate released from a disordered potential

    Full text link
    We observe large density modulations in time-of-flight images of elongated Bose-Einstein condensates, initially confined in a harmonic trap and in the presence of weak disorder. The development of these modulations during the time-of-flight and their dependence with the disorder are investigated. We render an account of this effect using numerical and analytical calculations. We conclude that the observed large density modulations originate from the weak initial density modulations induced by the disorder, and not from initial phase fluctuations (thermal or quantum).Comment: Published version; 4+ pages; 4 figure

    Gravitating Chern-Simons vortices

    Get PDF
    The construction of self-dual vortex solutions to the Chern-Simons-Higgs model (with a suitable eighth-order potential) coupled to Einstein gravity in (2 + 1) dimensions is reconsidered. We show that the self-duality condition may be derived from the sole assumption g00=1g_{00} = 1. Next, we derive a family of exact, doubly self-dual vortex solutions, which interpolate between the symmetrical and asymmetrical vacua. The corresponding spacetimes have two regions at spatial infinity. The eighth-order Higgs potential is positive definite, and closed timelike curves are absent, if the gravitational constant is chosen to be negative.Comment: 11 pages, LaTe
    corecore