413 research outputs found

    Wound dressing products: A translational investigation from the bench to the market

    Get PDF
    Chronic skin wounds affect more than 40 million patients globally and represent a severe growing burden for the healthcare systems, with annual costs expected to exceed $15 billions by 2022. To satisfy the huge demand for effective wound care products, different types of wound dressings have been introduced on the market during the last decades. Based on “the moist wound healing theory” postulated by Prof Winter in 1962, bandages were initially designed to recreate the optimal wound environment to favor the healing process. Then, thanks to the advancements achieved in biomaterial design and processing, biotechnology, imaging and electronic fields, great effort has been devoted to the development of formulations able to actively participate to tissue healing. Indeed, both the literature and the market report the design of medicated wound dressings, i.e., wound care products releasing anti-microbial agents, anti-inflammatory drugs, or bioactive molecules. In this scenario, this review aims at critically describing the currently available wound care products, highlighting their proved effectiveness in wound management. Moreover, an overview of the main strategies exploited to design personalized wound dressings has been reported. Lastly, concerns on regulatory affairs and practical issues limiting the clinical translation of advanced research platforms have also been discussed

    The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence

    Get PDF
    The collapse of a mine tailings dam and subsequent flood in SE Brazil on 5 November 2015 was preceded by a small-magnitude seismic sequence. In this report, we explore the spatiotemporal associations between the seismic events and the accident and discuss their possible connection. We also analyze the signals generated by the turbulent mudflow, as recorded by the Brazilian Seismographic Network (RSBR). In light of our observations, we propose as possible contributing factor for the dam collapse either ground shaking and/or soil liquefaction triggered by the earthquakes. The possibility of such a small-magnitude earthquake contributing to the collapse of a tailings dam raises important concerns regarding safety and related legislation of dams in Brazil and the world. Š2016. American Geophysical Union.H.A.D. and M.A. acknowledge support from Sao Paulo Research Foundation FAPESP grant 2014/09455-3 and CNPq grant 30.6547/2013-9.Peer reviewe

    Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses

    Get PDF
    Copper-containing bioactive glasses (Cu-MBGs) are attracting increasing interest as multifunctional agents for hard and soft tissue healing due to the ability of released copper ions to stimulate osteogenesis as well as angiogenesis and to impart anti-bacterial properties. The conjugation of these nanomaterials with a vehicle phase based on thermosensitive hydrogels represents an effective strategy to design non-invasive injectable devices for the in situ delivery of therapeutic ions from MBGs. In this contribution, Cu-containing MBGs were prepared by an aerosol-assisted spray-drying method (MBG_Cu 2%_SD) in the form of microspheres (surface area of ca 220m2 g−1) and through a sol-gel synthesis (MBG_Cu 2% _SG) in the form of spheroidal nanoparticles (surface area above 700m2 g−1). Both Cu-containing samples were able to release copper ions, although with different rates and percentage release. MBG_Cu 2%_SG released the total incorporated amount of Cu ions with a faster kinetics compared to MBG_Cu 2%_SD, that released approximately the 60% of copper. Cu-MBGs were incorporated with a final concentration of 20 mg/mL into a thermosensitive sol-gel system consisting of a novel amphiphilic poly(ether urethane) based on a commercialy available Poloxamer 407 (P407), with improved gelation ability, mechanical strength and stability in aqueous solution with respect to native P407. Cu-MBG-loaded hydrogels were characterised in terms of sol-to-gel transition temperature and time, injectability and stability in aqueous environment at 37 °C. The hybrid formulations showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3–5 min at 37 °C) and injectability in a wide range of temperatures (5–37 °C) through different needles (inner diameter in the range 0.6–1.6 mm)

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma

    Get PDF
    Intratumoral drug delivery is a promising approach for the treatment of glioblastoma multiforme (GBM). However, drug washout remains a major challenge in GBM therapy. Our strategy, aimed at reducing drug clearance and enhancing site-specific residence time, involves the local administration of a multi-component system comprised of nanoparticles (NPs) embedded within a thermosensitive hydrogel (HG). Herein, our objective was to examine the distribution of NPs and their cargo following intratumoral administration of this system in GBM. We hypothesized that the HG matrix, which undergoes rapid gelation upon increases in temperature, would contribute towards heightened site-specific retention and permanence of NPs in tumors. BODIPY-containing, infrared dye-labeled polymeric NPs embedded in a thermosensitive HG (HG-NPs) were fabricated and characterized. Retention and distribution dynamics were subsequently examined over time in orthotopic GBM-bearing mice. Results demonstrate that the HG-NPs system significantly improved site-specific, long-term retention of both NPs and BODIPY, with co-localization analyses showing that HG-NPs covered larger areas of the tumor and the peri-tumor region at later time points. Moreover, NPs released from the HG were shown to undergo uptake by surrounding GBM cells. Findings suggest that intratumoral delivery with HG-NPs has immense potential for GBM treatment, as well as other strategies where site-specific, long-term retention of therapeutic agents is warranted. This journal i
    • …
    corecore