431 research outputs found
Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall
The A+B --> C reaction-diffusion process is studied in a system where the
reagents are separated by a semipermeable wall. We use reaction-diffusion
equations to describe the process and to derive a scaling description for the
long-time behavior of the reaction front. Furthermore, we show that a critical
localization-delocalization transition takes place as a control parameter which
depends on the initial densities and on the diffusion constants is varied. The
transition is between a reaction front of finite width that is localized at the
wall and a front which is detached and moves away from the wall. At the
critical point, the reaction front remains at the wall but its width diverges
with time [as t^(1/6) in mean-field approximation].Comment: 7 pages, PS fil
Reaction-diffusion fronts with inhomogeneous initial conditions
Properties of reaction zones resulting from A+B -> C type reaction-diffusion
processes are investigated by analytical and numerical methods. The reagents A
and B are separated initially and, in addition, there is an initial macroscopic
inhomogeneity in the distribution of the B species. For simple two-dimensional
geometries, exact analytical results are presented for the time-evolution of
the geometric shape of the front. We also show using cellular automata
simulations that the fluctuations can be neglected both in the shape and in the
width of the front.Comment: 11 pages, 3 figures, submitted to J. Phys.
Critical behavior and Griffiths effects in the disordered contact process
We study the nonequilibrium phase transition in the one-dimensional contact
process with quenched spatial disorder by means of large-scale Monte-Carlo
simulations for times up to and system sizes up to sites. In
agreement with recent predictions of an infinite-randomness fixed point, our
simulations demonstrate activated (exponential) dynamical scaling at the
critical point. The critical behavior turns out to be universal, even for weak
disorder. However, the approach to this asymptotic behavior is extremely slow,
with crossover times of the order of or larger. In the Griffiths region
between the clean and the dirty critical points, we find power-law dynamical
behavior with continuously varying exponents. We discuss the generality of our
findings and relate them to a broader theory of rare region effects at phase
transitions with quenched disorder.Comment: 10 pages, 8 eps figures, final version as publishe
Formation of Liesegang patterns: A spinodal decomposition scenario
Spinodal decomposition in the presence of a moving particle source is
proposed as a mechanism for the formation of Liesegang bands. This mechanism
yields a sequence of band positions x_n that obeys the spacing law
x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial
concentration of the reagents is determined and we find that the functional
form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure
Computing Aggregate Properties of Preimages for 2D Cellular Automata
Computing properties of the set of precursors of a given configuration is a
common problem underlying many important questions about cellular automata.
Unfortunately, such computations quickly become intractable in dimension
greater than one. This paper presents an algorithm --- incremental aggregation
--- that can compute aggregate properties of the set of precursors
exponentially faster than na{\"i}ve approaches. The incremental aggregation
algorithm is demonstrated on two problems from the two-dimensional binary Game
of Life cellular automaton: precursor count distributions and higher-order mean
field theory coefficients. In both cases, incremental aggregation allows us to
obtain new results that were previously beyond reach
Liesegang patterns: Effect of dissociation of the invading electrolyte
The effect of dissociation of the invading electrolyte on the formation of
Liesegang bands is investigated. We find, using organic compounds with known
dissociation constants, that the spacing coefficient, 1+p, that characterizes
the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing
dissociation constant, K_d. Theoretical arguments are developed to explain
these experimental findings and to calculate explicitly the K_d dependence of
1+p.Comment: RevTex, 8 pages, 3 eps figure
Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions
The traffic-like collective movement of ants on a trail can be described by a
stochastic cellular automaton model. We have earlier investigated its unusual
flow-density relation by using various mean field approximations and computer
simulations. In this paper, we study the model following an alternative
approach based on the analogy with the zero range process, which is one of the
few known exactly solvable stochastic dynamical models. We show that our theory
can quantitatively account for the unusual non-monotonic dependence of the
average speed of the ants on their density for finite lattices with periodic
boundary conditions. Moreover, we argue that the model exhibits a continuous
phase transition at the critial density only in a limiting case. Furthermore,
we investigate the phase diagram of the model by replacing the periodic
boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
Signs of low frequency dispersions in disordered binary dielectric mixtures (50-50)
Dielectric relaxation in disordered dielectric mixtures are presented by
emphasizing the interfacial polarization. The obtained results coincide with
and cause confusion with those of the low frequency dispersion behavior. The
considered systems are composed of two phases on two-dimensional square and
triangular topological networks. We use the finite element method to calculate
the effective dielectric permittivities of randomly generated structures. The
dielectric relaxation phenomena together with the dielectric permittivity
values at constant frequencies are investigated, and significant differences of
the square and triangular topologies are observed. The frequency dependent
properties of some of the generated structures are examined. We conclude that
the topological disorder may lead to the normal or anomalous low frequency
dispersion if the electrical properties of the phases are chosen properly, such
that for ``slightly'' {\em reciprocal mixture}--when , and
--normal, and while for ``extreme'' {\em reciprocal
mixture}--when , and --anomalous
low frequency dispersions are obtained. Finally, comparison with experimental
data indicates that one can obtain valuable information from simulations when
the material properties of the constituents are not available and of
importance.Comment: 13 pages, 7 figure
Band Formation during Gaseous Diffusion in Aerogels
We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides
of and react in silica aerogel rods with porosity of 92 % and average pore size
of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin
sheet-like structures. We present a numerical study of the phenomenon. Due to
the difference in boundary conditions between this system and those usually
studied, we find the sheet-like structures in the aerogel to differ
significantly from older studies. The influence of random nucleation centers
and inhomogeneities in the aerogel is studied numerically.Comment: 7 pages RevTex and 8 figures. Figs. 4-8 in Postscript, Figs. 1-3 on
request from author
Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems
In this paper we apply a finite difference lattice Boltzmann model to study
the phase separation in a two-dimensional liquid-vapor system. Spurious
numerical effects in macroscopic equations are discussed and an appropriate
numerical scheme involving flux limiter techniques is proposed to minimize them
and guarantee a better numerical stability at very low viscosity. The phase
separation kinetics is investigated and we find evidence of two different
growth regimes depending on the value of the fluid viscosity as well as on the
liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
- …
