28 research outputs found

    Stochastic models of dense or hollow nanoparticles and their scattering properties

    Full text link
    peer reviewedA family of stochastic models of disordered particles is proposed, obtained by clipping a Gaussian random field with a function that is space dependent. Depending on the shape of the clipping function, dense or hollow particles can be modelled. General expressions are derived for the form factor of the particles, for their average volume and surface area, and for their density and surface-area distributions against the distance to the particle centre. A general approximation for the form factor is also introduced, based on the density and surface-area distributions, which coincides with the Guinier and Porod expressions in the limits of low and high scattering vector magnitude q. The models are illustrated with the fitting of small-angle X-ray scattering (SAXS) data measured on Pt/Ni hollow nanoparticles. The SAXS analysis and modelling notably capture the collapse of the particles' porosity after being used as oxygen-reduction catalysts

    Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor

    Get PDF
    [[abstract]]Facile and reliable screening of cost-effective, high-performance and scalable electrocatalysts is key for energy conversion technologies such as water splitting. ABO3-δ perovskites, with rich constitutions and structures, have never been designed via activity descriptors for critical hydrogen evolution reaction (HER). Here, we apply coordination rationales to introduce A-site ionic electronegativity (AIE) as an efficient unifying descriptor to predict the HER activities of 13 cobalt-based perovskites. Compared with A-site structural or thermodynamic parameter, AIE endows the HER activity with the best volcano trend. (Gd0.5La0.5)BaCo2O5.5+δ predicted from an AIE value of ~2.33 exceeds the state-of-the-art Pt/C catalyst in electrode activity and stability. X-ray absorption and computational studies reveal that the peak HER activities at a moderate AIE value of ~2.33 can be associated with the optimal electronic states of active B-sites via inductive effect in perovskite structure (~200 nm depth), including Co valence, Co-O bond covalency, band gap and O 2p-band position.[[notice]]補正完

    Inviscid, Compressible Flow Past Thin Airfoils

    No full text

    Unifying ORR structure-activity-stability relationships of shape-controlled and highly defective PtNi/C electrocatalysts

    No full text
    International audienceDue to strain and ligand effects, the simultaneous presence of concave and convex surfaces and their highly-defective nanostructure (atomic vacancies, grain boundaries), highly defective hollow PtNi/C electrocatalysts have proven to enhance remarkably the oxygen reduction reaction (ORR) kinetics [1,2]. Likewise, PtNi aerogel [3], jagged PtNi nanowires [4,5] feature both high concentration of structural defects and enhanced ORR activity. On the other hand, and inspired from single crystal approach, nanostructured octahedral-shaped PtNi/C electrocatalysts exhibiting only Pt(111) facets are among the most active ORR electrocatalysts [6,7]. This presentation will show how structure-activity-stability relationships of this two classes of materials can be unified via a unique descriptor, the Surface Distorsion, derived from a physical parameter, the microstrain obtained from X-ray diffraction patterns [8]

    Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework

    No full text
    XPS+CDFA+ADM:LCSInternational audienceMetal Organic Frameworks (MOFs) have been recently proposed as promising electrocatalysts, yet the exact nature of the mechanisms in play has not been addressed in depth. By comparing the electrocatalytic activity of a MOF for the oxygen reduction reaction (ORR) and the corresponding molecular building units through electrochemical techniques, here, we investigate the nature of the catalytic sites, their redox states and the electron transfer pathways
    corecore