42 research outputs found

    Valence fuctuation and magnetic ordering in EuNi2(P1-xGex)2 single crystals

    Full text link
    Unusual phases and phase transitions are seen at the magnetic-nonmagnetic boundary in Ce, Eu and Yb-based compounds. EuNi2_2P2_{2} is a very unusual valence fluctuating Eu system, because at low temperatures the Eu valence stays close to 2.5 instead of approaching an integer value. Eu valence and thus the magnetic property in this system can be tuned by Ge substitution in P site as EuNi2_2Ge2_{2} is known to exhibit antiferromagnetc (AFM) ordering of divalent Eu moments with TNT_N = 30 K. We have grown EuNi2_2(P1−x_{1-x}Gex_x)2_2 (0.0 ≤\leq xx ≤\leq 0.5) single crystals and studied their magnetic, thermodynamic and transport properties. Increasing Ge doping to x>x > 0.4 results in a well-defined AFM ordered state with TNT_N = 12 K for xx = 0.5. Moreover, the reduced value of magnetic entropy for xx = 0.5 at TNT_N suggests the presence of valance fluctuation/ Kondo effect in this compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld coefficient upon Ge doping. Subsequently, electronic structure calculations lead to a non-integral valence in EuNi2_2P2_{2} but a stable divalent Eu state in EuNi2_2Ge2_{2} which is in good agreement with experimental results.Comment: 7 pages, 8 figure

    Quantum criticality in the cubic heavy-fermion system CeIn_{3-x}Sn_x

    Full text link
    We report a comprehensive study of CeIn3−x_{3-x}Snx_x (0.55≤x≤0.8)(0.55 \leq x \leq 0.8) single crystals close to the antiferromagnetic (AF) quantum critical point (QCP) at xc≈0.67x_c\approx 0.67 by means of the low-temperature thermal expansion and Gr\"uneisen parameter. This system represents the first example for a {\it cubic} heavy fermion (HF) in which TNT_{\rm N} can be suppressed {\it continuously} down to T=0. A characteristic sign change of the Gr\"uneisen parameter between the AF and paramagnetic state indicates the accumulation of entropy close to the QCP. The observed quantum critical behavior is compatible with the predictions of the itinerant theory for three-dimensional critical spinfluctuations. This has important implications for the role of the dimensionality in HF QCPs.Comment: Physical Review Letters, to be publishe

    Generating Higher-Order Lie Algebras by Expanding Maurer Cartan Forms

    Full text link
    By means of a generalization of the Maurer-Cartan expansion method we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher order Maurer-Cartan equations for the case G=V0⊕V1\mathcal{G}=V_{0}\oplus V_{1} are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher order Maurer Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories

    Strong coupling between magnetic and structural order parameters in SrFe2As2

    Get PDF
    X-ray and Neutron diffraction as well as muon spin relaxation and M\"ossbauer experiments performed on SrFe2_2As2_2 polycrystalls confirm a sharp first order transition at T0=205T_0 = 205,K corresponding to an orthorhombic phase distortion and to a columnar antiferromagnetic Fe ordering with a propagation vector (1,0,1), and a larger distortion and larger size of the ordered moment than reported for BaFe2_2As2_2. The structural and the magnetic order parameters present an remarkable similarity in their temperature dependence from T0T_0 down to low temperatures, showing that both phenomena are intimately connected. Accordingly, the size of the ordered Fe moments scale with the lattice distortion when going from SrFe2_2As2_2 to BaFe2_2As2_2. Full-potential band structure calculations confirm that the columnar magnetic order and the orthorhombic lattice distortion are intrinsically tied to each other.Comment: 10 pages, 4 figure

    Quantum Criticality in doped CePd_1-xRh_x Ferromagnet

    Full text link
    CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C= 6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a detailed investigation on the suppression of the ferromagnetic (F) phase in this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat (C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration between x = 0.87 and 0.90. The quantum criticality of this region is recognized by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one at x = 0.87. At high temperature, this system shows the onset of valence instability revealed by a deviation from Vegard's law (at x_V~0.75) and increasing hybridization effects on high temperature \chi_dc and \rho. Coincidentally, a Fermi liquid contribution to the specific heat arises from the MV component, which becomes dominant at the CeRh limit. In contrast to antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather the mentioned power law divergence, which coincides with a change of sign of \beta. The coexistence of F and MV components and the sudden changes in the T dependencies are discussed in the context of randomly distributed magnetic and Kondo couplings.Comment: 11 pages, 11 figure

    Pressure effects on the electron-doped high Tc superconductor BaFe(2-x)Co(x)As(2)

    Full text link
    Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.Comment: 5 figure

    Feshbach resonances and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors

    Full text link
    High Tc superconductivity in FeAs-based multilayers (pnictides), evading temperature decoherence effects in a quantum condensate, is assigned to a Feshbach resonance (called also shape resonance) in the exchange-like interband pairing. The resonance is switched on by tuning the chemical potential at an electronic topological transition (ETT) near a band edge, where the Fermi surface topology of one of the subbands changes from 1D to 2D topology. We show that the tuning is realized by changing i) the misfit strain between the superconducting planes and the spacers ii) the charge density and iii) the disorder. The system is at the verge of a catastrophe i.e. near a structural and magnetic phase transition associated with the stripes (analogous to the 1/8 stripe phase in cuprates) order to disorder phase transition. Fine tuning of both the chemical potential and the disorder pushes the critical temperature Ts of this phase transition to zero giving a quantum critical point. Here the quantum lattice and magnetic fluctuations promote the Feshbach resonance of the exchange-like anisotropic pairing. This superconducting phase that resists to the attacks of temperature is shown to be controlled by the interplay of the hopping energy between stripes and the quantum fluctuations. The superconducting gaps in the multiple Fermi surface spots reported by the recent ARPES experiment of D. V. Evtushinsky et al. arXiv:0809.4455 are shown to support the Feshbach scenario.Comment: 31 pages, 7 figure
    corecore