42 research outputs found
Valence fuctuation and magnetic ordering in EuNi2(P1-xGex)2 single crystals
Unusual phases and phase transitions are seen at the magnetic-nonmagnetic
boundary in Ce, Eu and Yb-based compounds. EuNiP is a very unusual
valence fluctuating Eu system, because at low temperatures the Eu valence stays
close to 2.5 instead of approaching an integer value. Eu valence and thus the
magnetic property in this system can be tuned by Ge substitution in P site as
EuNiGe is known to exhibit antiferromagnetc (AFM) ordering of
divalent Eu moments with = 30 K. We have grown
EuNi(PGe) (0.0 0.5) single crystals and
studied their magnetic, thermodynamic and transport properties. Increasing Ge
doping to 0.4 results in a well-defined AFM ordered state with = 12
K for = 0.5. Moreover, the reduced value of magnetic entropy for = 0.5
at suggests the presence of valance fluctuation/ Kondo effect in this
compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld
coefficient upon Ge doping. Subsequently, electronic structure calculations
lead to a non-integral valence in EuNiP but a stable divalent Eu
state in EuNiGe which is in good agreement with experimental results.Comment: 7 pages, 8 figure
Quantum criticality in the cubic heavy-fermion system CeIn_{3-x}Sn_x
We report a comprehensive study of CeInSn single crystals close to the antiferromagnetic (AF) quantum critical
point (QCP) at by means of the low-temperature thermal
expansion and Gr\"uneisen parameter. This system represents the first example
for a {\it cubic} heavy fermion (HF) in which can be suppressed
{\it continuously} down to T=0. A characteristic sign change of the Gr\"uneisen
parameter between the AF and paramagnetic state indicates the accumulation of
entropy close to the QCP. The observed quantum critical behavior is compatible
with the predictions of the itinerant theory for three-dimensional critical
spinfluctuations. This has important implications for the role of the
dimensionality in HF QCPs.Comment: Physical Review Letters, to be publishe
Generating Higher-Order Lie Algebras by Expanding Maurer Cartan Forms
By means of a generalization of the Maurer-Cartan expansion method we
construct a procedure to obtain expanded higher-order Lie algebras. The
expanded higher order Maurer-Cartan equations for the case
are found. A dual formulation for the
S-expansion multialgebra procedure is also considered. The expanded higher
order Maurer Cartan equations are recovered from S-expansion formalism by
choosing a special semigroup. This dual method could be useful in finding a
generalization to the case of a generalized free differential algebra, which
may be relevant for physical applications in, e.g., higher-spin gauge theories
Strong coupling between magnetic and structural order parameters in SrFe2As2
X-ray and Neutron diffraction as well as muon spin relaxation and M\"ossbauer
experiments performed on SrFeAs polycrystalls confirm a sharp first
order transition at ,K corresponding to an orthorhombic phase
distortion and to a columnar antiferromagnetic Fe ordering with a propagation
vector (1,0,1), and a larger distortion and larger size of the ordered moment
than reported for BaFeAs. The structural and the magnetic order
parameters present an remarkable similarity in their temperature dependence
from down to low temperatures, showing that both phenomena are intimately
connected. Accordingly, the size of the ordered Fe moments scale with the
lattice distortion when going from SrFeAs to BaFeAs.
Full-potential band structure calculations confirm that the columnar magnetic
order and the orthorhombic lattice distortion are intrinsically tied to each
other.Comment: 10 pages, 4 figure
Quantum Criticality in doped CePd_1-xRh_x Ferromagnet
CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C=
6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a
detailed investigation on the suppression of the ferromagnetic (F) phase in
this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat
(C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results
show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K
at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is
traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration
between x = 0.87 and 0.90. The quantum criticality of this region is recognized
by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one
at x = 0.87. At high temperature, this system shows the onset of valence
instability revealed by a deviation from Vegard's law (at x_V~0.75) and
increasing hybridization effects on high temperature \chi_dc and \rho.
Coincidentally, a Fermi liquid contribution to the specific heat arises from
the MV component, which becomes dominant at the CeRh limit. In contrast to
antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather
the mentioned power law divergence, which coincides with a change of sign of
\beta. The coexistence of F and MV components and the sudden changes in the T
dependencies are discussed in the context of randomly distributed magnetic and
Kondo couplings.Comment: 11 pages, 11 figure
Pressure effects on the electron-doped high Tc superconductor BaFe(2-x)Co(x)As(2)
Application of pressures or electron-doping through Co substitution into Fe
sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a
superconductor with the Tc exceeding 20K. We carried out systematic transport
measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa,
and elucidate the interplay between the effects of electron-doping and
pressures. For the underdoped sample with nominal composition x = 0.08,
application of pressure strongly suppresses a magnetic instability while
enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the
optimally doped x=0.20 sample shows very little enhancement of Tc=22K under
applied pressure. Our results strongly suggest that the proximity to a magnetic
instability is the key to the mechanism of superconductivity in iron-pnictides.Comment: 5 figure
Feshbach resonances and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors
High Tc superconductivity in FeAs-based multilayers (pnictides), evading
temperature decoherence effects in a quantum condensate, is assigned to a
Feshbach resonance (called also shape resonance) in the exchange-like interband
pairing. The resonance is switched on by tuning the chemical potential at an
electronic topological transition (ETT) near a band edge, where the Fermi
surface topology of one of the subbands changes from 1D to 2D topology. We show
that the tuning is realized by changing i) the misfit strain between the
superconducting planes and the spacers ii) the charge density and iii) the
disorder. The system is at the verge of a catastrophe i.e. near a structural
and magnetic phase transition associated with the stripes (analogous to the 1/8
stripe phase in cuprates) order to disorder phase transition. Fine tuning of
both the chemical potential and the disorder pushes the critical temperature Ts
of this phase transition to zero giving a quantum critical point. Here the
quantum lattice and magnetic fluctuations promote the Feshbach resonance of the
exchange-like anisotropic pairing. This superconducting phase that resists to
the attacks of temperature is shown to be controlled by the interplay of the
hopping energy between stripes and the quantum fluctuations. The
superconducting gaps in the multiple Fermi surface spots reported by the recent
ARPES experiment of D. V. Evtushinsky et al. arXiv:0809.4455 are shown to
support the Feshbach scenario.Comment: 31 pages, 7 figure