124 research outputs found

    A monolithic numerical model to predict the EMI shielding performance of lossy dielectric polymer nanocomposite shields in a rectangular waveguide:Design of an absorption-based sawtooth-shaped layer

    Get PDF
    A three-dimensional numerical model is constructed to predict the EMI shielding performance of a polymer nanocomposite shield in a rectangular waveguide. The Helmholtz wave equation for the electric field is implemented in component form and the set of coupled equations is solved via the finite element approach. Mesh convergence and model verification is performed by comparing free space model predictions for a flat, uniform layer to benchmark solutions calculated via transfer matrix theory. The capability of the model is showcased by exploring the role of geometry on the shielding performance of a sawtooth-shaped composite layer in a rectangular waveguide. Increasing the inclusion angle of the sawtooth, which is proportional to the ratio of the sawtooth amplitude and repeat unit width, reduces the transmitted power through the shield and increases the ratio of absorption to reflection of wave power by the shield. Thus, a rational design of this sawtooth geometry allows to overcome the typical trade-off between total shielding effectiveness and wave absorption contribution, thereby resulting in highly performant absorption-dominated shields.</p

    Friction reducing ability of a poly-l-lysine and dopamine modified hyaluronan coating for polycaprolactone cartilage resurfacing implants

    Get PDF
    Frictional properties of cartilage resurfacing implants should be sufficiently low to limit damaging of the opposing cartilage during articulation. The present study determines if native lubricious molecule proteoglycan 4 (PRG4) can adsorb onto a layer-by-layer bioinspired coating composed of poly-l-lysine (PLL) and dopamine modified hyaluronic acid (HADN) and thereby can reduce the friction between implant and articular cartilage. An ELISA was developed to quantify the amount of immobilized human recombinant (rh)PRG4 after exposure to the PLL-HADN coating. The effect on lubrication was evaluated by comparing the coefficient of friction (CoF) of bare polycaprolactone (PCL) disks to that of PLL-HADN coated PCL disks while articulated against cartilage using a ring-on-disk geometry and a lubricant solution consisting of native synovial fluid components including rhPRG4. The PLL-HADN coating effectively immobilized rhPRG4. The surface roughness of PCL disks significantly increased while the water contact angle significantly decreased after application of the coating. The average CoF measured during the first minute of bare PCL against cartilage exceeded twice the CoF of the PLL-HADN coated PCL against cartilage. After 60 min, the CoF reached equilibrium values which were still significantly higher for bare PCL compared to coated PCL. The present study demonstrated that PCL can effectively be coated with PLL-HADN. Additionally, this coating reduces the friction between PCL and cartilage when a PRG4-rich lubricant is used, similar to the lubricating surface of native cartilage. This makes PLL-HADN coating a promising application to improve the clinical success of PCL-based cartilage resurfacing implants.</p

    Characterization of ultraviolet-cured methacrylate networks: from photopolymerization to ultimate mechanical properties

    Get PDF
    In this study, the effect of different process conditions on the material properties of a single UV-cured layer of methacrylate resin, typically used in the stereolithography (SLA) process, is assessed. This simplified approach of the SLA process gives the opportunity to study the link between process conditions and mechanical properties without complicated interactions between different layers. Fourier-transform infrared analysis is performed to study the effect of light intensity, curing time, and initiator concentration on the monomer conversion. A model is developed based on the reaction kinetics of photopolymerization that describes and predicts the experimental data. The effect of curing time and light intensity on the glass-transition temperature is studied. A unique relation exists between conversion and glass-transition temperature, independent of the light intensity and curing time. Tensile tests on UV-cured resin show an increase in yield stress with increasing curing time and a linear relation between glass-transition temperature and yield stress. However, a lower light intensity leads to a different network structure characterized by a lower yield stress and glass-transition temperature. The correlations between process conditions and the mechanical properties of UV-cured methacrylate systems are established to better understand the role of the processing parameters involved in the SLA process

    Thin film mechanical characterization of UV-curing acrylate systems

    No full text
    © 2018 Elsevier Ltd This study presents the mechanical characterization of UV-curing acrylate systems. UV-curable polymers are commonly used in the stereolithography (SLA) technique to build multi-layered objects. Typically, the mechanical properties of the 3D-printed product are affected by the intrinsic material heterogeneity along the sample thickness. To understand what determines this heterogeneity, single layers of UV-curable polymer are characterized and the effect of process conditions on the mechanical properties is studied. Micro-compression experiments are carried out to determine the intrinsic mechanical properties which are representative of one single UV-cured layer. To determine the right conditions to generate maximally-cured micropillars, the evolution with irradiation time of monomer conversion, glass-transition temperature and yield stress has first been studied. Thereto, micrometer-sized pillars and dog-bone shaped samples have been prepared via UV-curing. Micro-compression measurements on maximally-cured micropillars are performed to study possible size effects. The results reveal that with decreasing pillar size, the yield stress decreases. Tensile measurements are performed on dog-bone shaped samples which have been processed in the same way as compared to the compression samples. These tensile tests show higher yield stress values when compared with compression tests. This size effect can be attributed to the rinsing with acetone during the sample preparation that leads to a removal of monomer from the crosslinked network. As a consequence, in the real 3D-printing process, the mechanical properties will depend on the feature size. In conclusion, a method is presented to determine the mechanical properties of one single layer of material used in the rapid-prototyping SLA process. The experimental procedure we adopted requires only a few millilitres of material and, therefore, is well suited for screening materials under real SLA process conditions.status: publishe

    Towards a universal shear correction factor in filament stretching rheometry

    Get PDF
    Filament stretching rheometry is a prominent experimental method to determine rheological properties in extensional flow whereby the separating plates determine the extension rate. In literature, several correction factors that can compensate for the errors introduced by the shear contribution near the plates have been introduced and validated in the linear viscoelastic regime. In this work, a systematic analysis is conducted to determine if a material-independent correction factor can be found for non-linear viscoelastic polymers. To this end, a finite element model is presented to describe the flow and resulting stresses in the filament stretching rheometer. The model incorporates non-linear viscoelasticity and a radius-based controller for the plate speed is added to mimic the typical extensional flow in filament stretching rheometry. The model is validated by comparing force simulations with analytical solutions. The effects of the end-plates on the extensional flow and resulting force measurements are investigated, and a modification of the shear correction factor is proposed for the non-linear viscoelastic flow regime. This shows good agreement with simulations performed at multiple initial aspect ratios and strain rates and is shown to be valid for a range of polymers with non-linear rheological behaviour

    Friction reducing ability of a poly-l-lysine and dopamine modified hyaluronan coating for polycaprolactone cartilage resurfacing implants

    Get PDF
    Frictional properties of cartilage resurfacing implants should be sufficiently low to limit damaging of the opposing cartilage during articulation. The present study determines if native lubricious molecule proteoglycan 4 (PRG4) can adsorb onto a layer-by-layer bioinspired coating composed of poly-l-lysine (PLL) and dopamine modified hyaluronic acid (HADN) and thereby can reduce the friction between implant and articular cartilage. An ELISA was developed to quantify the amount of immobilized human recombinant (rh)PRG4 after exposure to the PLL-HADN coating. The effect on lubrication was evaluated by comparing the coefficient of friction (CoF) of bare polycaprolactone (PCL) disks to that of PLL-HADN coated PCL disks while articulated against cartilage using a ring-on-disk geometry and a lubricant solution consisting of native synovial fluid components including rhPRG4. The PLL-HADN coating effectively immobilized rhPRG4. The surface roughness of PCL disks significantly increased while the water contact angle significantly decreased after application of the coating. The average CoF measured during the first minute of bare PCL against cartilage exceeded twice the CoF of the PLL-HADN coated PCL against cartilage. After 60 min, the CoF reached equilibrium values which were still significantly higher for bare PCL compared to coated PCL. The present study demonstrated that PCL can effectively be coated with PLL-HADN. Additionally, this coating reduces the friction between PCL and cartilage when a PRG4-rich lubricant is used, similar to the lubricating surface of native cartilage. This makes PLL-HADN coating a promising application to improve the clinical success of PCL-based cartilage resurfacing implants.</p

    Thin film mechanical characterization of UV-curing acrylate systems

    Get PDF
    This study presents the mechanical characterization of UV-curing acrylate systems. UV-curable polymers are commonly used in the stereolithography (SLA) technique to build multi-layered objects. Typically, the mechanical properties of the 3D-printed product are affected by the intrinsic material heterogeneity along the sample thickness. To understand what determines this heterogeneity, single layers of UV-curable polymer are characterized and the effect of process conditions on the mechanical properties is studied. Micro-compression experiments are carried out to determine the intrinsic mechanical properties which are representative of one single UV-cured layer. To determine the right conditions to generate maximally-cured micropillars, the evolution with irradiation time of monomer conversion, glass-transition temperature and yield stress has first been studied. Thereto, micrometer-sized pillars and dog-bone shaped samples have been prepared via UV-curing. Micro-compression measurements on maximally-cured micropillars are performed to study possible size effects. The results reveal that with decreasing pillar size, the yield stress decreases. Tensile measurements are performed on dog-bone shaped samples which have been processed in the same way as compared to the compression samples. These tensile tests show higher yield stress values when compared with compression tests. This size effect can be attributed to the rinsing with acetone during the sample preparation that leads to a removal of monomer from the crosslinked network. As a consequence, in the real 3D-printing process, the mechanical properties will depend on the feature size. In conclusion, a method is presented to determine the mechanical properties of one single layer of material used in the rapid-prototyping SLA process. The experimental procedure we adopted requires only a few millilitres of material and, therefore, is well suited for screening materials under real SLA process conditions
    • …
    corecore