250 research outputs found

    Genetic conflicts with Plasmodium parasites and functional constraints shape the evolution of erythrocyte cytoskeletal proteins

    Get PDF
    Plasmodium parasites exerted a strong selective pressure on primate genomes and mutations in genes encoding erythrocyte cytoskeleton proteins (ECP) determine protective effects against Plasmodium infection/pathogenesis. We thus hypothesized that ECP-encoding genes have evolved in response to Plasmodium-driven selection. We analyzed the evolutionary history of 15 ECP-encoding genes in primates, as well as of their Plasmodium-encoded ligands (KAHRP, MESA and EMP3). Results indicated that EPB42, SLC4A1, and SPTA1 evolved under pervasive positive selection and that episodes of positive selection tended to occur more frequently in primate species that host a larger number of Plasmodium parasites. Conversely, several genes, including ANK1 and SPTB, displayed extensive signatures of purifying selection in primate phylogenies, Homininae lineages, and human populations, suggesting strong functional constraints. Analysis of Plasmodium genes indicated adaptive evolution in MESA and KAHRP; in the latter, different positively selected sites were located in the spectrin-binding domains. Because most of the positively selected sites in alpha-spectrin localized to the domains involved in the interaction with KAHRP, we suggest that the two proteins are engaged in an arms-race scenario. This observation is relevant because KAHRP is essential for the formation of \u201cknobs\u201d, which represent a major virulence determinant for P. falciparum

    Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses

    Get PDF
    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barr\ue9 syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian/American ZIKV lineage

    Ancient Evolution of Mammarenaviruses: Adaptation via Changes in the L Protein and No Evidence for Host-Virus Codivergence

    Get PDF
    The Mammarenavirus genus includes several pathogenic species of rodent-borne viruses. Old World (OW) mammarenaviruses infect rodents in the Murinae subfamily and are mainly transmitted in Africa and Asia; New World (NW) mammarenaviruses are found in rodents of the Cricetidae subfamily in the Americas. We applied a selection-informed method to estimate that OW and NW mammarenaviruses diverged less than 3c45,000\u2009years ago (ya). By incorporating phylogeographic inference, we show that NW mammarenaviruses emerged in the Latin America-Caribbean region 3c41,400-3,300 ya, whereas OW mammarenaviruses originated 3c23,100-1,880 ya, most likely in Southern Africa. Cophylogenetic analysis indicated that cospeciation did not contribute significantly to mammarenavirus-host associations. Finally, we show that extremely strong selective pressure on the viral polymerase accompanied the speciation of NW viruses. These data suggest that the evolutionary history of mammarenaviruses was not driven by codivergence with their hosts. The viral polymerase should be regarded as a major determinant of mammarenavirus adaptation

    Evolutionary rates of mammalian telomere-stability genes correlate with karyotype features and female germline expression

    Get PDF
    Telomeres protect the ends of eukaryotic chromosomes and are essential for cell viability. In mammals, telomere dynamics vary with life history traits (e.g. body mass and longevity), suggesting differential selection depending on physiological characteristics. Telomeres, in analogy to centromeric regions, also represent candidate meiotic drivers and subtelomeric DNA evolves rapidly. We analyzed the evolutionary history of mammalian genes implicated in telomere homeostasis (TEL genes). We detected widespread positive selection and we tested two alternative hypotheses: (i) fast evolution is driven by changes in life history traits; (ii) a conflict with selfish DNA elements at the female meiosis represents the underlying selective pressure. By accounting for the phylogenetic relationships among mammalian species, we show that life history traits do not contribute to shape diversity of TEL genes. Conversely, the evolutionary rate of TEL genes correlates with expression levels during meiosis and episodes of positive selection across mammalian species are associated with karyotype features (number of chromosome arms). We thus propose a telomere drive hypothesis, whereby (sub)telomeres and telomere-binding proteins are engaged in an intra-genomic conflict similar to the one described for centromeres

    Albuminoid genes: evolving at the interface of dispensability and selection

    Get PDF
    The albuminoid gene family comprises vitamin D-binding protein (GC), alpha-fetoprotein (AFP), afamin (AFM), and albumin (ALB). Albumin is the most abundant human serum protein, and, as the other family members, acts as a transporter of endogenous and exogenous substances including thyroxine, fatty acids, and drugs. Instead, the major cargo of GC is 25-hydroxyvitamin D. We performed an evolutionarystudy of albuminoid genes and we show that ALB evolved adaptively in mammals. Most positively selected sites are located within albumin-binding sites for fatty acids and thyroxine, as well as at the contact surface with neonatal Fc receptor. Positive selection was also detected for residues forming the prostaglandin-binding pocket. Adaptation to hibernation/torpor might explain the signatures of episodic positive selection we detected for few mammalian lineages. Application of a population genetics-phylogenetics approach showed that purifying selection represented a major force acting on albuminoid genes in both humans and chimpanzees, with the strongest constraint observed for human GC. Population genetic analysis revealed that GC was also the target of locally exerted selective pressure, which drove the frequency increase of different haplotypes in distinct human populations. A search for known variants that modulate GC and 25-hydroxyvitamin D concentrations revealed linkage disequilibrium with positively selected variants, although European and Asian major GC haplotypes carry alleles with reported opposite effect on GC concentration. Data herein indicate that albumin, an extremely abundant housekeeping protein, was the target of pervasive and episodic selection in mammals, whereas GC represented a selection target during the recent evolution of human populations

    Extensive Positive Selection Drives the Evolution of Nonstructural Proteins in Lineage C Betacoronaviruses

    Get PDF
    Middle East respiratory syndrome-related coronavirus (MERS-CoV) spreads to humans via zoonotic transmission from camels. MERS-CoV belongs to lineage C of betacoronaviruses (betaCoVs), which also includes viruses isolated from bats and hedgehogs. A large portion of the betaCoV genome consists of two open reading frames (ORF1a and ORF1b) that are translated into polyproteins. These are cleaved by viral proteases to generate 16 nonstructural proteins (nsp1 to nsp16) which compose the viral replication-transcription complex. We investigated the evolution of ORF1a and ORF1b in lineage C betaCoVs. Results indicated widespread positive selection, acting mostly on ORF1a. The proportion of positively selected sites in ORF1a was much higher than that previously reported for the surface-exposed spike protein. Selected sites were unevenly distributed, with nsp3 representing the preferential target. Several pairs of coevolving sites were also detected, possibly indicating epistatic interactions; most of these were located in nsp3. Adaptive evolution at nsp3 is ongoing in MERS-CoV strains, and two selected sites (G720 and R911) were detected in the protease domain. While position 720 is variable in camel-derived viruses, suggesting that the selective event does not represent a specific adaptation to humans, the R911C substitution was observed only in human-derived MERS-CoV isolates, including the viral strain responsible for the recent South Korean outbreak. It will be extremely important to assess whether these changes affect host range or other viral phenotypes. More generally, data herein indicate that CoV nsp3 represents a major selection target and that nsp3 sequencing should be envisaged in monitoring programs and field surveys

    OASes and STING : Adaptive evolution in concert

    Get PDF
    OAS(2'-5'-oligoadenylate synthases)proteinsand cyclic GMP-AMP synthase(cGAS,genesymbol: MB21D1)patrol the cytoplasmfor the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1-TMEM173 and OAS-RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an a-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants

    The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) originated in bats and spread to humans via zoonotic transmission from camels. We analyzed the evolution of the spike (S) gene in betacoronaviruses (betaCoVs) isolated from different mammals, in bat coronavirus populations, as well as in MERS-CoV strains from the current outbreak. Results indicated several positively selected sites located in the region comprising the two heptad repeats (HR1 and HR2) and their linker. Two sites (R652 and V1060) were positively selected in the betaCoVs phylogeny and correspond to mutations associated with expanded host range in other coronaviruses. During the most recent evolution of MERS-CoV, adaptive mutations in the HR1 (Q/R/H1020) arose in camels or in a previous host and spread to humans. We determined that different residues at position 1020 establish distinct inter-and intra-helical interactions and affect the stability of the six-helix bundle formed by the HRs. A similar effect on stability was observed for a nearby mutation (T1015N) that increases MERS-CoV infection efficiency in vitro. Data herein indicate that the heptad repeat region was a major target of adaptive evolution in MERS-CoV-related viruses; these results are relevant for the design of fusion inhibitor peptides with antiviral function
    • …
    corecore