1,564 research outputs found

    Modelling nitrogen dynamics at Lochnagar, N.E. Scotland.

    No full text
    International audienceControls on nitrate leaching from upland moorland catchments are not yet fully understood and yet, despite agreements on emission reductions, increased surface water nitrate concentrations may affect significantly the acidity status of these waters in the future. At Lochnagar, an upland moorland catchment in N.E. Scotland, 12 years of surface water chemistry observations have identified a steady increase in nitrate concentration despite no measured change in inorganic nitrogen deposition. The MAGIC model has been applied to simulate a "best case" situation assuming nitrate in surface water represents "hydrological" contributions (direct run-off) and a ?worst case' assuming a nitrogen saturation mechanism in the catchment soil. Only the ?saturation' model is capable of matching the 12 years of observation for nitrate but both model structures match the pH and acid neutralising capacity record. Future predictions to 2040, in response to the agreed emission reductions under the Gothenburg Protocol, are markedly different. The worst case predicts continued surface water acidification whilst the best case predicts a steady recovery. Keywords: nitrogen saturation, modelling, Lochnagar, Gothenburg Protoco

    Land use influences on acidification and recovery of freshwaters in Galloway, south-west Scotland

    No full text
    International audienceThe long term response of surface waters to changes in sulphur deposition and afforestation is investigated for three upland river systems in the Galloway region of south-west Scotland. From 1984-1999, these rivers exhibited a statistically significant decline in non-marine sulphate concentrations in response to reduced acid deposition. This reduction in non-marine sulphate was, however, insufficient to induce a pH recovery over the period. A statistically significant increase in river pH was observed between 1956-1970 (0.05 yr-1) when subsidised agricultural lime payments were at a maximum. In 1976, this subsidy ceased and surface waters have progressively acidified. In addition, climatic change is found to influence long-term trends in pH. Mean annual pH was greatest during a dry period between 1969-1973 when total annual discharge was low. Thereafter, pH declined gradually in response to higher rainfall and increased total annual discharge. Overall, surface waters draining the afforested catchments of the Rivers Cree and Bladnoch are more acid than those draining the moorland catchment of the Luce. These results indicate that in afforested catchments, current reductions in sulphur emissions have not led to an observed improvement in the acid status of surface waters. Forestry, therefore, represents a confounding factor with regard to chemical recovery from acidification in this region. Keywords: acidification, afforestation, deposition, rivers, lochs, non-marine sulphate, p

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Recovery from acidification of lochs in Galloway, south-west Scotland, UK: 1979-1998

    No full text
    International audienceThe Galloway region of south-west Scotland has historically been subject to long-term deposition of acidic precipitation which has resulted in acidification of soils and surface waters and subsequent damage to aquatic ecology. Since the end of the 1970s, however, acidic deposition has decreased substantially. The general pattern is for a rapid decline in non-marine sulphate in rainwater over the period 1978-1988 followed by stable concentrations to the mid-1990s. Concentrations of nitrate and ammonium in deposition have remained constant between 1980 and 1998. Seven water quality surveys of 48 lochs in the Galloway region have been conducted between 1979 and 1998. During the first 10 years, from 1979, there was a major decline in regional sulphate concentrations in the lochs, which was expected to have produced a decline in base cations and an increase in the acid neutralising capacity. But sea-salt levels (as indicated by chloride concentrations) were approximately 25% higher in 1988 than in 1979 and thus short-term acidification due to sea-salts offset much of the long-term recovery trend expected in the lochs. During the next 10 years, however, the chloride concentrations returned to 1979 levels and the lochs showed large increases in acid neutralising capacity despite little change in sulphate concentrations. From the observed decline in sulphate deposition and concentrations of sulphate in the lochs, it appears that approximately 75% of the possible improvement in acid neutralising capacity has already occurred over the 20-year period (1979-1998). The role of acid deposition as a driving factor for change in water chemistry in the Galloway lochs is confounded by concurrent changes in other driving variables, most notably, factors related to episodic and year-to-year variations in climate. In addition to inputs of sea-salts, climate probably also influences other chemical signals such as peaks in regional nitrate concentrations and the sharp increase in dissolved organic carbon during the 1990s. Keywords: acidification, recovery, Galloway, sulphur, nitroge

    Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model

    No full text
    International audienceThe MAGIC model of the responses of catchments to acidic deposition has been applied and tested extensively over a 15 year period at many sites and in many regions around the world. Overall, the model has proven to be robust, reliable and useful in a variety of scientific and managerial activities. Over the years, several refinements and additions to MAGIC have been proposed and/or implemented for particular applications. These adjustments to the model structure have all been included in a new version of the model (MAGIC7). The log aluminium ? pH relationship now does not have to be fixed to aluminium trihydroxide solubility. Buffering by organic acids using a triprotic analog is now included. Dynamics of nitrogen retention and loss in catchments can now be linked to soil nitrogen and carbon pools. Simulation of short-term episodic response by mixing fractions of different water types is also possible. This paper presents a review of the conceptual structure of MAGIC7 relating to long-term simulation of acidification and recovery, describes the conceptual basis of the new nitrogen dynamics and provides a comprehensive update of the equations, variables, parameters and inputs for the model. Keywords: process-based model, acid deposition, recover

    A two-layer application of the MAGIC model to predict the effects of land use scenarios and reductions in deposition on acid sensitive soils in the UK

    Get PDF
    International audienceA two-layer application of the catchment-based soil and surface water acidification model, MAGIC, was applied to 21 sites in the UK Acid Waters Monitoring Network (AWAMN), and the results were compared with those from a one-layer application of the model. The two-layer model represented typical soil properties more accurately by segregating the organic and mineral horizons into two separate soil compartments. Reductions in sulphur (S) emissions associated with the Second S Protocol and different forestry (land use) scenarios were modelled, and their effects on soil acidification evaluated. Soil acidification was assessed in terms of base saturation and critical loads for the molar ratio of base cations (CA2+ + MG 2+ + K+) to aluminium (Al) in soil solution. The results of the two-layer application indicate that base saturation of the organic compartment was very responsive to changes in land use and deposition compared with the mineral soil. With the two- layer model, the organic soil compartment was particularly sensitive to acid deposition, which resulted in the critical load being predicted to be exceeded at eight sites in 1997 and two sites in 2010. These results indicate that further reductions in S deposition are necessary to raise the base cation (BC):Al ratio above the threshold which is harmful to tree roots. At forested sites BC:Al ratios were generally well below the threshold designated for soil critical loads in Europe and forecasts indicate that forest replanting can adversely affect the acid status of sensitive term objectives of protecting and sustaining soil and water quality. Policy formulation must seek to protect the most sensitive environmental receptor, in this case organic soils. It is clear, therefore, that simply securing protection of surface waters, via the critical loads approach, may not ensure adequate protection of low base status organic soils from the effects of acidification

    Assessing emission reduction targets with dynamic models: deriving target load functions for use in integrated assessment

    No full text
    International audienceInternational agreements to reduce the emission of acidifying sulphur (S) and nitrogen (N) compounds have been negotiated on the basis of an understanding of the link between acidification related changes in soil and surface water chemistry and terrestrial and aquatic biota. The quantification of this link is incorporated within the concept of critical loads. Critical loads are calculated using steady state models and give no indication of the time within which acidified ecosystems might be expected to recover. Dynamic models provide an opportunity to assess the timescale of recovery and can go further to provide outputs which can be used in future emission reduction strategies. In this respect, the Target Load Function (TLF) is proposed as a means of assessing the deposition load necessary to restore a damaged ecosystem to some pre-defined acceptable state by a certain time in the future. A target load represents the deposition of S and N in a defined year (implementation year) for which the critical limit is achieved in a defined time (target year). A TLF is constructed using an appropriate dynamic model to determine the value of a chemical criterion at a given point in time given a temporal pattern of S and N deposition loads. A TLF requires information regarding: (i) the chemical criterion required to protect the chosen biological receptor (i.e. the critical limit); (ii) the year in which the critical limit is required to be achieved; and (iii) time pattern of future emission reductions. In addition, the TLF can be assessed for whole regions to incorporate the effect of these three essentially ecosystem management decisions. Keywords: emission reduction, critical load, target load, dynamic model, recovery tim

    Modelling the ecosystem effects of nitrogen deposition: Model of ecosystem retention and loss of inorganic nitrogen (MERLIN)

    Get PDF
    A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN) considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1) temporal sequences of carbon fluxes and pools- 2) time series of hydrological discharge through the soils, 3) historical and current external sources of inorganic nitrogen; 4) current amounts of nitrogen in the plant and soil organic compartments; 5) constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6) soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1) concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2) total nitrogen contents of the organic and inorganic compartments; 3) C:N ratios of the aggregated plant and soil organic compartments; and 4) rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen dynamics in growing forests receiving nitrogen deposition

    Hydrogeochemsitry of montane springs and their influence on streams in the Cairngorm mountains, Scotland

    No full text
    International audienceSprings are important groundwater discharge points on the high altitude (>800m) plateaux of the Cairngorm mountains, Scotland and form important wetland habitats within what is often a dry, sub-arctic landscape. The hydrogeochemistry of a typical spring in the Allt a'Mharcaidh catchment was examined between 1995-98 in order to characterise its chemical composition, identify the dominant controls on its chemical evolution and estimate groundwater residence time using 18O isotopes. Spring water, sustained by groundwater flow in shallow drift deposits and fractured bedrock, was moderately acidic (mean pH 5.89), with a very low alkalinity (mean 18 ?eq l-1) and the ionic composition was dominated by sea-salts derived from atmospheric sources. Geochemical modelling using NETPATH, predicted that the dissolution of plagioclase mainly controls the release of Si, non-marine Na, Ca, K and Al into spring water. Hydrological conditions influenced seasonal variations in spring chemistry, with snowmelt associated with more rapid groundwater flows and lower weathering rates than summer discharges. Downstream of the spring, the chemistry of surface water was fundamentally different as a result of drainage from larger catchment areas, with increased soil and drift cover, and higher evaporation rates. Thus, the hydrogeochemical influence of springs on surface waters appears to be localized. Mean ?18O values in spring water were lower and more damped than those in precipitation. Nevertheless, a sinusoidal seasonal pattern was observed and used to estimate mean residence times of groundwater of around 2 years. Thus, in the high altitude plateau of the Cairngorms, shallow, coarse drift deposits from significant aquifers. At lower altitudes, deeper drift deposits, combined with larger catchment areas, increase mean groundwater residence times to >5 years. At high altitudes, the shallow, permeable nature of the drifts dictates that groundwater is vulnerable to impacts of environmental changes that could be usefully monitored at spring sites

    Phonon assisted dynamical Coulomb blockade in a thin suspended graphite sheet

    Full text link
    The differential conductance in a suspended few layered graphene sample is fou nd to exhibit a series of quasi-periodic sharp dips as a function of bias at l ow temperature. We show that they can be understood within a simple model of dyn amical Coulomb blockade where energy exchanges take place between the charge carriers transmitted trough the sample and a dissipative electromagnetic envir onment with a resonant phonon mode strongly coupled to the electrons
    • …
    corecore