2,158 research outputs found

    The Sagittarius Dwarf spheroidal Galaxy Survey (SDGS) II: The stellar content and constraints on the star formation history

    Full text link
    A detailed study of the Star Formation History of the Sgr dSph galaxy is performed through the analysis of the data from the Sagittarius Dwarf Galaxy Survey (SDGS; Bellazzini, Ferraro & Buonanno 1999). Accurate statistical decontamination of the SDGS Color - Magnitude diagrams allow us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different region of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~ -2.0 to [Fe/H]~ -0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the Star Formation History of the Sgr is derived. According to this scheme, star formation began at very early time from a low metal content Inter Stellar Medium and lasted for several Gyr, coupled with progressive chemical enrichment. The Star Formation Rate (SFR) had a peak from 8 to 10 gyr ago when the mean metallicity was in the range -1.3<= [Fe/H] <= -0.7. After that maximum, the SFR rapidly decreased and very low rate star formation took place until ~1-0.5 Gyr ago.Comment: 21 pages, 12 figures, figg. 1,2,3,5,6,10 and 11 provided in lower resolution format. For full resolution versions see http://www.bo.astro.it/bap/BAPhome.html Accepted by MNRA

    The giant, horizontal and asymptotic branches of galactic globular clusters. I. The catalog, photometric observables and features

    Get PDF
    A catalog including a set of the most recent Color Magnitude Diagrams (CMDs) is presented for a sample of 61 Galactic Globular Clusters (GGCs). We used this data-base to perform an homogeneous systematic analysis of the evolved sequences (namely, Red Giant Branch (RGB), Horizontal Branch (HB) and Asymptotic Giant Branch (AGB)). Based on this analysis, we present: (1) a new procedure to measure the level of the ZAHB (V_ZAHB) and an homogeneous set of distance moduli obtained adopting the HB as standard candle; (2) an independent estimate for RGB metallicity indicators and new calibrations of these parameters in terms of both spectroscopic ([Fe/H]_CG97) and global metallicity ([M/H], including also the alpha-elements enhancement). The set of equations presented can be used to simultaneously derive a photometric estimate of the metal abundance and the reddening from the morphology and the location of the RGB in the (V,B-V)-CMD. (3) the location of the RGB-Bump (in 47 GGCs) and the AGB-Bump (in 9 GGCs). The dependence of these features on the metallicity is discussed. We find that by using the latest theoretical models and the new metallicity scales the earlier discrepancy between theory and observations (~0.4 mag) completely disappears.Comment: 51 pages, 23 figures, AAS Latex, macro rtrpp4.sty included, accepted by A

    Discriminating between a Stochastic Gravitational Wave Background and Instrument Noise

    Full text link
    The detection of a stochastic background of gravitational waves could significantly impact our understanding of the physical processes that shaped the early Universe. The challenge lies in separating the cosmological signal from other stochastic processes such as instrument noise and astrophysical foregrounds. One approach is to build two or more detectors and cross correlate their output, thereby enhancing the common gravitational wave signal relative to the uncorrelated instrument noise. When only one detector is available, as will likely be the case with the Laser Interferometer Space Antenna (LISA), alternative analysis techniques must be developed. Here we show that models of the noise and signal transfer functions can be used to tease apart the gravitational and instrument noise contributions. We discuss the role of gravitational wave insensitive "null channels" formed from particular combinations of the time delay interferometry, and derive a new combination that maintains this insensitivity for unequal arm length detectors. We show that, in the absence of astrophysical foregrounds, LISA could detect signals with energy densities as low as Ωgw=6×1013\Omega_{\rm gw} = 6 \times 10^{-13} with just one month of data. We describe an end-to-end Bayesian analysis pipeline that is able to search for, characterize and assign confidence levels for the detection of a stochastic gravitational wave background, and demonstrate the effectiveness of this approach using simulated data from the third round of Mock LISA Data Challenges.Comment: 10 Pages, 10 Figure

    “FROM WASTE TO TASTE”: Exploring The Cultural Significance of Grapevine Leaves in Reggio Emilia to Foster Sustainability and Cultural Understanding

    Get PDF
    Reggio Emilia, Italy, has a rich history of wine production dating back to the 15th century. However, the global wine industry discards around 42 million tonnes of grapevine cuttings each year by burying or burning them on farms, leading to wasteful practices (Ellis, 2020). This inspired two PhD students with diverse backgrounds to raise awareness of the cultural significance of grapevine leaves in various communities in Reggio Emilia. They argue that grapevine leaves are not only a byproduct of winemaking but also an essential ingredient in many cultures, including immigrant communities, and how this practice aligns with food sustainability and cultural identity. The study draws on the Reggio Emilia Approach to food education, which highlights the importance of food as a medium for learning and explores the power of dialogue and negotiation in constructing meaning. Mealtimes, according to educators in Reggio Emilia, are moments for socializing, expressing cultural identities, and learning new skills and knowledge ((Edwards, Gandini, &amp; Forman, 1998; Rinaldi, 2005) The researchers used autoethnography to demonstrate how grape leaves are used and their cultural significance in different contexts. They interviewed local farmers and communities and held workshops on making Dolma, a dish enjoyed by many nationalities, using grapevine leaves (Dogan et al., 2017). The study emphasizes the power of dialogue and negotiation in constructing meaning and recognizes the interconnectedness between plants and humans in our food experiences and cultural understanding. The findings have significant implications for food education, sustainable practices, and cultural significance in Reggio Emilia and other communities globally (Ozturk, 2022), highlighting the importance of collaboration between individuals from diverse backgrounds in promoting sustainable practices and fostering cultural understanding

    Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors

    Full text link
    The uncertainty principle, applied naively to the test masses of a laser-interferometer gravitational-wave detector, produces a Standard Quantum Limit (SQL) on the interferometer's sensitivity. It has long been thought that beating this SQL would require a radical redesign of interferometers. However, we show that LIGO-II interferometers, currently planned for 2006, can beat the SQL by as much as a factor two over a bandwidth \Delta f \sim f, if their thermal noise can be pushed low enough. This is due to dynamical correlations between photon shot noise and radiation-pressure noise, produced by the LIGO-II signal-recycling mirror.Comment: 12 pages, 2 figures; minor changes, some references adde
    corecore