99 research outputs found

    Evaluation of a Vancomycin Dosing Protocol and Pharmacokinetic Parameters in Burn Patients

    Get PDF
    Published abstract from the 47th American Burn Association Annual Meeting. Chicago, IL April 2015

    Comparison of 3-, 5-, and 6-Phase Machines for Automotive Charging Applications

    Get PDF
    In this paper, the performance of a 5-phase claw-pole machine/converter system is compared with those of 3-phase and 6-phase systems of the same volume. It is shown that the acoustic output of the 5-phase machine compares favorably with that of the 6-phase machine and is much lower than that of the 3-phase machine over a majority of the operating range. In addition, the output current produced by the 5-phase machine Is, in general, 6-8% higher than those of the 3-phase and 6-phase machines. These results suggest that for maximizing power density while minimizing cost and acoustic noise, 5-phase machines provide a competitive alternative to 6-phase machines of identical volume

    Incorporating the Effects of Magnetic Saturation in a Coupled-Circuit Model of a Claw-Pole Alternator

    Get PDF
    A method of representing the effects of magnetic saturation in a coupled-circuit model of a claw-pole alternator is presented. In the approach considered, the airgap flux density produced by each winding is expressed as a function of magnetic operating point. A challenge in the implementation is that the airgap flux densities consist of several significant harmonics, each of which changes at a distinct rate as iron saturates. Despite this complication, it is shown that relatively simple measurements can be used to determine model parameters. The model is implemented in the analysis of several alternator/rectifier systems using a commercial state-model-based circuit analysis program. Comparisons with experimental results over a wide range of speeds and operating conditions demonstrate its accuracy in predicting both the steady state and transient behavior of the systems

    Time course of rapid bone loss and cortical porosity formation observed by longitudinal μCT in a rat model of CKD

    Get PDF
    Background Rodent studies of bone in chronic kidney disease have primarily relied on end-point examinations of bone microarchitecture. This study used longitudinal in vivo microcomputed tomography (in vivo μCT) to characterize the onset and progression of bone loss, specifically cortical porosity, in the Cy/+ rat of model of CKD. Methods Male CKD rats and normal littermates were studied. In vivo μCT scans of the right distal tibia repeated at 25, 30, and 35 weeks were analyzed for longitudinal changes in cortical and trabecular bone morphometry. In vitro μCT scans of the tibia and femur identified spatial patterns of bone loss across distal, midshaft and proximal sites. Results CKD animals had reduced BV/TV and cortical BV at all time points but developed cortical porosity and thinning between 30 and 35 weeks. Cortical pore formation was localized near the endosteal surface. The severity of bone loss was variable across bone sites, but the distal tibia was representative of both cortical and trabecular changes. Conclusions The distal tibia was found to be a sensitive suitable site for longitudinal imaging of both cortical and trabecular bone changes in the CKD rat. CKD trabecular bone loss progressed through ~30 weeks followed by a sudden acceleration in cortical bone catabolism. These changes varied in timing and severity across individuals, and cortical bone loss and porosity progressed rapidly once initiated. The inclusion of longitudinal μCT in future studies will be important for both reducing the number of required animals and to track individual responses to treatment

    Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III α binding to ssDNA

    Get PDF
    Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA polymerase III at two distinct binding sites, one of which is adjacent to the single-stranded DNA-binding site of α. Here, we use single molecule DNA stretching experiments to demonstrate that UmuD specifically inhibits binding of α to ssDNA. We predict using molecular modeling that UmuD residues D91 and G92 are involved in this interaction and demonstrate that mutation of these residues disrupts the interaction. Our results suggest that competition between UmuD and ssDNA for α binding is a new mechanism for polymerase exchange

    Analytical Derivation of a Coupled-circuit Model of a Claw-pole Alternator with Concentrated Stator Windings

    Get PDF
    A lumped-parameter coupled-circuit model of a claw-pole alternator is derived. To derive the model, analytical techniques are used to define a three-dimensional (3-D) Fourier-series representation of the airgap flux density. Included in the series expansion are the harmonics introduced by rotor saliency, concentrated stator windings, and stator slots. From the airgap flux density waveform, relatively simple closed-form expressions for the stator and rotor self- and mutual-inductances are obtained. The coupled-circuit model is implemented in the simulation of an alternator/rectifier system using a commercial state-model-based circuit analysis program. Comparisons with experimental results demonstrate the accuracy of the model in predicting both the steady-state and transient behavior of the machin

    The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor

    Get PDF
    The effect of the dietary flavonoid galangin on the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA), the activity of cytochrome P 450 1A1 (CYP1A1), and the expression of CYP1A1 in MCF-7 human breast carcinoma cells was investigated. Galangin inhibited the catabolic breakdown of DMBA, as measured by thin-layer chromatography, in a dose-dependent manner. Galangin also inhibited the formation of DMBA-DNA adducts, and prevented DMBA-induced inhibition of cell growth. Galangin caused a potent, dose-dependent inhibition of CYP1A1 activity, as measured by ethoxyresorufin-O-deethylase activity, in intact cells and in microsomes isolated from DMBA-treated cells. Analysis of the inhibition kinetics by double-reciprocal plot demonstrated that galangin inhibited CYP1A1 activity in a non-competitive manner. Galangin caused an increase in the level of CYP1A1 mRNA, indicating that it may be an agonist of the aryl hydrocarbon receptor, but it inhibited the induction of CYP1A1 mRNA by DMBA or by 2,3,5,7-tetrachlorodibenzo-p-dioxin (TCDD). Galangin also inhibited the DMBA- or TCDD-induced transcription of a reporter vector containing the CYP1A1 promoter. Thus, galangin is a potent inhibitor of DMBA metabolism and an agonist/antagonist of the AhR, and may prove to be an effective chemopreventive agent. © 1999 Cancer Research Campaig

    Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    Get PDF
    BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments

    The role of nuclear technologies in the diagnosis and control of livestock diseases—a review

    Full text link
    • …
    corecore