3,382 research outputs found

    High contrast Mach-Zehnder lithium atom interferometer in the Bragg regime

    Get PDF
    We have constructed an atom interferometer of the Mach-Zehnder type, operating with a supersonic beam of lithium. Atom diffraction uses Bragg diffraction on laser standing waves. With first order diffraction, our apparatus has given a large signal and a very good fringe contrast (74%), which we believe to be the highest ever observed with atom interferometers. This apparatus will be applied to high sensitivity measurementsComment: 6 pages, 3 figures, accepted by Appl. Phys.

    Dissection of the amyloid formation pathway in AL amyloidosis

    Get PDF
    In antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the V-L domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel beta-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention. AL amyloidosis is caused by the accumulation of overproduced light chain (LC) fragments as fibrils in patient organs and it is the most prevalent systemic amyloidosis. Here, the authors combine biochemical and biophysical experiments to characterise the lag phase of a patient-derived truncated LC and they identify structural transitions that precede fibril formation

    Entwicklung eines Inkubationssystems für ein inverses Mikroskop zur Langzeitbeobachtung von Zellkulturen in gekammerten Objektträgern

    Get PDF
    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between Various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques

    Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure

    Full text link
    Superconductor/ferromagnet (S/F) proximity effect theory predicts that the superconducting critical temperature of the F1/F2/S or F1/S/F2 trilayers for the parallel orientation of the F1 and F2 magnetizations is smaller than for the antiparallel one. This suggests a possibility of a controlled switching between the superconducting and normal states in the S layer. Here, using the spin switch design F1/F2/S theoretically proposed by Oh et al. [Appl. Phys. Lett. 71, 2376 (1997)], that comprises a ferromagnetic bilayer separated by a non-magnetic metallic spacer layer as a ferromagnetic component, and an ordinary superconductor as the second interface component, we have successfully realized a full spin switch effect for the superconducting current.Comment: 5 pages, 4 figure

    EFFECTS OF AN EXTENSIVE RUNNING BOUT IN NOVICE FEMALE RUNNERS

    Get PDF
    The purpose of this study was to characterize the spatiotemporal, force, and subjective effects that occur during an extensive run in novice female runners. Foot sole pressure, rate of fatigue, and speed were recorded during a 45-min flat ecological run. No significant effects were found in spatiotemporal, force-time, or rate of fatigue responses outside of the initiation phase of the running bout. When participants were grouped according to their pacing strategy, those with a decreasing speed over time exhibited significant decreases in rate of force development as time progressed. Participants tended to decrease mechanical loading variables, and increase their rate of fatigue throughout the run. Future studies should investigate a larger number of subjects to determine if these tendencies are characteristic of novice female runners
    • …
    corecore