51 research outputs found
Preliminary design of a geologic sample acquisition and transport device Final report, May - Oct. 1965
Design concept for breadboard model of geological sample and transport device for Surveyor projec
Report of the ultraviolet and visible sensors panel
In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies
Generalized Kahler Geometry from supersymmetric sigma models
We give a physical derivation of generalized Kahler geometry. Starting from a
supersymmetric nonlinear sigma model, we rederive and explain the results of
Gualtieri regarding the equivalence between generalized Kahler geometry and the
bi-hermitean geometry of Gates-Hull-Rocek.
When cast in the language of supersymmetric sigma models, this relation maps
precisely to that between the Lagrangian and the Hamiltonian formalisms.
We also discuss topological twist in this context.Comment: 18 page
Sub-electron noise charge-coupled devices
A charge coupled device designed for celestial spectroscopy has achieved readout noise as low as 0.6 electrons rms. A nondestructive output circuit was operated in a special manner to read a single pixel multiple times. Off-chip electronics averaged the multiple values, reducing the random noise by the square root of the number of readouts. Charge capacity was measured to be 500,000 electrons. The device format is 1600 pixels horizontal by 64 pixels vertical. Pixel size is 28 microns square. Two output circuits are located at opposite ends of the 1600 bit CCD register. The device was thinned and operated backside illuminated at -110 degrees C. Output circuit design, layout, and operation are described. Presented data includes the photon transfer curve, noise histograms, and bar-target images down to 3 electrons signal. The test electronics are described, and future improvements are discussed
Topological twisted sigma model with H-flux revisited
In this paper we revisit the topological twisted sigma model with H-flux. We
explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian
geometry. we show that the resulting action consists of a BRST exact term and
pullback terms, which only depend on one of the two generalized complex
structures and the B-field. We then discuss the topological feature of the
model.Comment: 16 pages. Appendix adde
First-order supersymmetric sigma models and target space geometry
We study the conditions under which N=(1,1) generalized sigma models support
an extension to N=(2,2). The enhanced supersymmetry is related to the target
space complex geometry. Concentrating on a simple situation, related to Poisson
sigma models, we develop a language that may help us analyze more complicated
models in the future. In particular, we uncover a geometrical framework which
contains generalized complex geometry as a special case.Comment: 1+19 pages, JHEP style, published versio
T-duality and Generalized Kahler Geometry
We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities
for generalized Kahler geometries. Following the usual procedure, we gauge
isometries of nonlinear sigma-models and introduce Lagrange multipliers that
constrain the field-strengths of the gauge fields to vanish. Integrating out
the Lagrange multipliers leads to the original action, whereas integrating out
the vector multiplets gives the dual action. The description is given both in N
= (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor
clarification
New advancements in charge-coupled device technology: sub-electron noise and 4096x4096 pixel CCDs
This paper reports on two new advancements in CCD technology. The first area of development has produced a special purpose CCD designed for ultra low-signal level imaging and spectroscopy applications that require sub-electron read noise floors. A nondestructive output circuit operating near its 1/f noise regime is clocked in a special manner to read a single pixel multiple times. Off-chip electronics average the multiple values, reducing the random noise by the square-root of the number of samples taken. Noise floors below 0.5 electrons rms are reported. The second development involves the design and performance of a high resolution imager of 4096 x 4096 pixels, the largest CCD manufactured in terms of pixel count. The device utilizes a 7.5-micron pixel fabricated with three-level poly-silicon to achieve high yield
SL(2,Z) tensionless string backgrounds in IIB string theory
We examine a tensionless limit of a SL(2,Z) set of background solutions to
IIB supergravity theory, obtained by performing an infinite boost. This yields
a solution that corresponds to taking the original string tension to zero. The
limit reproduces ordinary Minkowski space except for a delta-like singularity
along the string. We study the field content and the energy momentum tensor.Comment: 1+8 pages, LaTeX, JHEP styl
- …