10,143 research outputs found

    COUPLING CHIRAL BOSONS TO GRAVITY

    Get PDF
    The chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representationComment: 8 pages, Latex, no figure

    Anomalous dimensions from rotating open strings in AdS/CFT

    Get PDF
    We propose a new entry within the dictionary of the AdS/CFT duality at strong coupling: in the limit of a large spin or a large R-charge, the anomalous dimension of the gauge theory operator dual to a semiclassical rotating string is proportional to the string proper length. This conjecture is motivated by a generalization to strings of the rule for computing anomalous dimensions of massive particles and supergravity fields in the anti-de Sitter space. We show that this proportionality holds for a rotating closed string in global AdS space, representing a high spin operator made of fields in the adjoint representation. It is also valid for closed strings rotating in S5S^5 (representing operators with large R-charge), for closed strings with multiple AdS spin, and for giant magnons. Based on this conjecture, we calculate the anomalous dimension δ\delta of operators made of fields in the fundamental representation, associated with high spin mesons, and which are represented by rotating open strings attached to probe D7-branes. The result is a logarithmic dependence upon the spin, δλlnS\delta\sim \sqrt{\lambda}\ln S, similar to the closed string case. We show that the operator properties --- anomalous dimension and spin --- are obtained from measurements made by a local observer in the anti-de Sitter space. For the open string case, this ensures that these quantities are independent of the mass scale introduced by the D7-branes (the quark mass), as expected on physical grounds. In contrast, properties of the gauge theory states, like the energy, correspond to measurements by a gauge theory observer and depend upon the mass scale --- once again, as expected.Comment: V2: two related references include

    Chiral Bosons as solutions of the BV master equation 2D chiral gauge theories

    Full text link
    We construct the chiral Wess-Zumino term as a solution for the Batalin-Vilkovisky master equation for anomalous two-dimensional gauge theories, working in an extended field-antifield space, where the gauge group elements are introduced as additional degrees of freedom. We analyze the Abelian and the non-Abelian cases, calculating in both cases the BRST generator in order to show the physical equivalence between this chiral solution for the master equation and the usual (non-chiral) one.Comment: 11 pages, TEX dialet, IF/UFRJ-94-

    Quasinormal modes and dispersion relations for quarkonium in a plasma

    Full text link
    Recent investigations show that the thermal spectral function of heavy bbˉ {b \bar b } and ccˉ {c \bar c} vector mesons can be described using holography. These studies consider a bottom up model that captures the heavy flavour spectroscopy of masses and decay constants in the vacuum and is consistently extended to finite temperature. The corresponding spectral functions provide a picture of the dissociation process in terms of the decrease of the quasi-state peaks with temperature. Another related tool that provides important information about the thermal behaviour is the analysis of the quasinormal modes. They are field solutions in a curved background assumed to represent, in gauge/gravity duality, quasi-particle states in a thermal medium. The associated complex frequencies are related to the thermal mass and width. We present here the calculation of quasinormal modes for charmonium and bottomonium using the holographic approach. The temperature dependence of mass and thermal width are investigated. Solutions corresponding to heavy mesons moving into the plasma are also studied. They provide the dependence of the real and imaginary parts of the frequency with the quasi-particle momenta, the so called dispersion relations.Comment: V2: enlarged version with clarifications, more comparison with previous articles and additional references included. 11 figures, 2 tables, 62 references. Version accepted for publication in JHE
    corecore