5,675 research outputs found

    MHD simulations of disk-star interaction

    Full text link
    We discuss a number of topics relevant to disk-magnetosphere interaction and how numerical simulations illuminate them. The topics include: (1) disk-magnetosphere interaction and the problem of disk-locking; (2) the wind problem; (3) structure of the magnetospheric flow, hot spots at the star's surface, and the inner disk region; (4) modeling of spectra from 3D funnel streams; (5) accretion to a star with a complex magnetic field; (6) accretion through 3D instabilities; (7) magnetospheric gap and survival of protoplanets. Results of both 2D and 3D simulations are discussed.Comment: 12 pages, 10 figures, Star-Disk Interaction in Young Stars, Proceedings of the International Astronomical Union, IAU Symposium, Volume 243. See animations at http://astro.cornell.edu/~romanova/projects.htm and at http://astro.cornell.edu/us-rus

    Catching GRBs with atmospheric Cherenkov telescopes

    Full text link
    Fermi has shown GRBs to be a source of >10 GeV photons. We present an estimate of the detection rate of GRBs with a next generation Cherenkov telescope. Our predictions are based on the observed properties of GRBs detected by Fermi, combined with the spectral properties and redshift determinations for the bursts population by instruments operating at lower energies. While detection of VHE emission from GRBs has eluded ground-based instruments thus far, our results suggest that ground-based detection may be within reach of the proposed Cherenkov Telescope Array (CTA), albeit with a low rate, 0.25 - 0.5/yr. Such a detection would help constrain the emission mechanism of gamma-ray emission from GRBs. Photons at these energies from distant GRBs are affected by the UV-optical background light, and a ground-based detection could also provide a valuable probe of the Extragalactic Background Light (EBL) in place at high redshift.Comment: 4 pages, 3 figures, to appear in the Proceedings of "Gamma Ray Bursts 2010", held Nov. 1-4, 2010 in Annapolis, M

    A Search for Photometric Rotation Periods in Low-Mass Stars and Brown Dwarfs in the Pleiades

    Get PDF
    We have photometrically monitored (Cousins Ic) eight low mass stars and brown dwarfs which are probable members of the Pleiades. We derived rotation periods for two of the stars - HHJ409 and CFHT-PL8 - to be 0.258 d and 0.401 d, respectively. The masses of these stars are near 0.4 and 0.08 Msun, respectively; the latter is the second such object near the hydrogen-burning boundary for which a rotation period has been measured. We also observed HHJ409 in V; the relative amplitude in the two bands shows that the spots in that star are about 200 K cooler than the stellar effective temperature of 3560 K and have a filling factor on the order of 13%. With one possible exception, the remaining stars in the sample do not show photometric variations larger than the mean error of measurement. We also examined the M9.5V disk star 2MASSJ0149, which had previously exhibited a strong flare event, but did not detect any photometric variation.Comment: 13 pages, four figures. Accepted for publication in A

    Diamagnetic Blob Interaction Model of T Tauri Variability

    Get PDF
    Assuming a diamagnetic interaction between a stellar-spot originated localized magnetic field and gas blobs in the accretion disk around a T- Tauri star, we show the possibility of ejection of such blobs out of the disk plane. Choosing the interaction radius and the magnetic field parameters in a suitable way gives rise to closed orbits for the ejected blobs. A stream of matter composed of such blobs, ejected on one side of the disk and impacting on the other, can form a hot spot at a fixed position on the disk (in the frame rotating with the star). Such a hot spot, spread somewhat by disk shear before cooling, may be responsible in some cases for the lightcurve variations observed in various T-Tauri stars over the years. An eclipse-based mechanism due to stellar obscuration of the spot is proposed. Assuming high disk inclination angles it is able to explain many of the puzzling properties of these variations. By varying the field parameters and blob initial conditions we obtain variations in the apparent angular velocity of the hot spot, producing a constantly changing period or intermittent periodicity disappearance in the models.Comment: 6 pages, 4 figures, aas2pp4 styl

    A deep, wide-field search for substellar members in NGC 2264

    Full text link
    We report the first results of our ongoing campaign to discover the first brown dwarfs (BD) in NGC 2264, a young (3 Myr), populous star forming region for which our optical studies have revealed a very high density of potential candidates - 236 in << 1 deg2^2 - from the substellar limit down to at least ∌\sim 20 MJup_{\rm Jup} for zero reddening. Candidate BD were first selected using wide field (I,zI,z) band imaging with CFH12K, by reference to current theoretical isochrones. Subsequently, 79 (33%) of the I,zI,z sample were found to have near-infrared 2MASS photometry (JHKsJHK_s ±\pm 0.3 mag. or better), yielding dereddened magnitudes and allowing further investigation by comparison with the location of NextGen and DUSTY isochrones in colour-colour and colour-magnitude diagrams involving various combinations of II,JJ,HH and KsK_s. We discuss the status and potential substellarity of a number of relatively unreddened (Av_{\rm v} << 5) likely low-mass members in our sample, but in spite of the depth of our observations in I,zI,z, we are as yet unable to unambiguously identify substellar candidates using only 2MASS data. Nevertheless, there are excellent arguments for considering two faint (observed II ∌\sim 18.4 and 21.2) objects as cluster candidates with masses respectively at or rather below the hydrogen burning limit. More current candidates could be proven to be cluster members with masses around 0.1 M⊙_{\odot} {\it via} gravity-sensitive spectroscopy, and deeper near-infrared imaging will surely reveal a hitherto unknown population of young brown dwarfs in this region, accessible to the next generation of deep near-infrared surveys.Comment: 10 pages, 12 figures, accepted by A&

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    A 10-micron Search for Inner-Truncated Disks Among Pre-Main-Sequence Stars With Photometric Rotation Periods

    Full text link
    We use mid-IR (primarily 10 Ό\mum) photometry as a diagnostic for the presence of disks with inner cavities among 32 pre-main sequence stars in Orion and Taurus-Auriga for which rotation periods are known and which do not show evidence for inner disks at near-IR wavelengths. Disks with inner cavities are predicted by magnetic disk-locking models that seek to explain the regulation of angular momentum in T Tauri stars. Only three stars in our sample show evidence for excess mid-IR emission. While these three stars may possess truncated disks consistent with magnetic disk-locking models, the remaining 29 stars in our sample do not. Apparently, stars lacking near-IR excesses in general do not possess truncated disks to which they are magnetically coupled. We discuss the implications of this result for the hypothesis of disk-regulated angular momentum. Evidently, young stars can exist as slow rotators without the aid of present disk-locking, and there exist very young stars already rotating near breakup velocity whose subsequent angular momentum evolution will not be regulated by disks. Moreover, we question whether disks, when present, truncate in the manner required by disk-locking scenarios. Finally, we discuss the need for rotational evolution models to take full account of the large dispersion of rotation rates present at 1 Myr, which may allow the models to explain the rotational evolution of low-mass pre-main sequence stars in a way that does not depend upon braking by disks.Comment: 20 pages, 4 figure

    Differential rotation decay in the radiative envelopes of CP stars

    Full text link
    Stars of spectral classes A and late B are almost entirely radiative. CP stars are a slowly rotating subgroup of these stars. It is possible that they possessed long-lived accretion disks in their T Tauri phase. Magnetic coupling of disk and star leads to rotational braking at the surface of the star. Microscopic viscosities are extremely small and will not be able to reduce the rotation rate of the core of the star. We investigate the question whether magneto-rotational instability can provide turbulent angular momentum transport. We illuminate the question whether or not differential rotation is present in CP stars. Numerical MHD simulations of thick stellar shells are performed. An initial differential rotation law is subject to the influence of a magnetic field. The configuration gives indeed rise to magneto-rotational instability. The emerging flows and magnetic fields transport efficiently angular momentum outwards. Weak dependence on the magnetic Prandtl number (~0.01 in stars) is found from the simulations. Since the estimated time-scale of decay of differential rotation is 10^7-10^8 yr and comparable to the life-time of A stars, we find the braking of the core to be an ongoing process in many CP stars. The evolution of the surface rotation of CP stars with age will be an observational challenge and of much value for verifying the simulations.Comment: 8 pages, 11 figures; submitted to Astron. & Astrophy
    • 

    corecore