19 research outputs found

    Human and human-yeast chimeric U6 snRNA genes identify structural elements required for expression in yeast.

    No full text
    U6 is the most highly conserved spliceosomal snRNA. Previous mutational studies have shown that the majority of essential residues in U6 are located in a region of 35 nucleotides encompassing a conserved hexanucleotide and stem I and stem II of the U4-interaction domain. Although the yeast and human U6 RNAs are 80% identical in this region, the human U6 gene cannot functionally replace the yeast gene in vivo. The human gene is not transcribed when placed in the context of yeast flanking sequences. Transcription of the human gene, but not its function, can be stimulated by the introduction of an A block promoter element in the U6 coding region. Using a set of human-yeast chimeras, we show that the 5' domain and the 3' terminal region of the human U6 gene can each functionally replace the corresponding yeast domains. However, a combination of both domains in a single molecule is lethal. The basis of the inability of the human U6 snRNA to function in yeast cells is discussed

    A Conserved Drosophila Transportin-Serine/Arginine-rich (SR) Protein Permits Nuclear Import of Drosophila SR Protein Splicing Factors and Their Antagonist Repressor Splicing Factor 1

    Get PDF
    Members of the highly conserved serine/arginine-rich (SR) protein family are nuclear factors involved in splicing of metazoan mRNA precursors. In mammals, two nuclear import receptors, transportin (TRN)-SR1 and TRN-SR2, are responsible for targeting SR proteins to the nucleus. Distinctive features in the nuclear localization signal between Drosophila and mammalian SR proteins prompted us to examine the mechanism by which Drosophila SR proteins and their antagonist repressor splicing factor 1 (RSF1) are imported into nucleus. Herein, we report the identification and characterization of a Drosophila importin β-family protein (dTRN-SR), homologous to TRN-SR2, that specifically interacts with both SR proteins and RSF1. dTRN-SR has a broad localization in the cytoplasm and the nucleus, whereas an N-terminal deletion mutant colocalizes with SR proteins in nuclear speckles. Far Western experiments established that the RS domain of SR proteins and the GRS domain of RSF1 are required for the direct interaction with dTRN-SR, an interaction that can be modulated by phosphorylation. Using the yeast model system in which nuclear import of Drosophila SR proteins and RSF1 is impaired, we demonstrate that complementation with dTRN-SR is sufficient to target these proteins to the nucleus. Together, the results imply that the mechanism by which SR proteins are imported to the nucleus is conserved between Drosophila and humans
    corecore