183 research outputs found

    On the fundamental representation of Borcherds algebras with one imaginary simple root

    Full text link
    Borcherds algebras represent a new class of Lie algebras which have almost all the properties that ordinary Kac-Moody algebras have, and the only major difference is that these generalized Kac-Moody algebras are allowed to have imaginary simple roots. The simplest nontrivial examples one can think of are those where one adds ``by hand'' one imaginary simple root to an ordinary Kac-Moody algebra. We study the fundamental representation of this class of examples and prove that an irreducible module is given by the full tensor algebra over some integrable highest weight module of the underlying Kac-Moody algebra. We also comment on possible realizations of these Lie algebras in physics as symmetry algebras in quantum field theory.Comment: 8 page

    A Siegel cusp form of degree 12 and weight 12

    Full text link
    The theta series of the two unimodular even positive definite lattices of rank 16 are known to be linearly dependent in degree at most 3 and linearly independent in degree 4. In this paper we consider the next case of the 24 Niemeier lattices of rank 24. The associated theta series are linearly dependent in degree at most 11 and linearly independent in degree 12. The resulting Siegel cusp form of degree 12 and weight 12 is a Hecke eigenform which seems to have interesting properties.Comment: 12 pages, plain te

    BKM Lie superalgebra for the Z_5 orbifolded CHL string

    Full text link
    We study the Z_5-orbifolding of the CHL string theory by explicitly constructing the modular form tilde{Phi}_2 generating the degeneracies of the 1/4-BPS states in the theory. Since the additive seed for the sum form is a weak Jacobi form in this case, a mismatch is found between the modular forms generated from the additive lift and the product form derived from threshold corrections. We also construct the BKM Lie superalgebra, tilde{G}_5, corresponding to the modular form tilde{Delta}_1 (Z) = tilde{Phi}_2 (Z)^{1/2} which happens to be a hyperbolic algebra. This is the first occurrence of a hyperbolic BKM Lie superalgebra. We also study the walls of marginal stability of this theory in detail, and extend the arithmetic structure found by Cheng and Dabholkar for the N=1,2,3 orbifoldings to the N=4,5 and 6 models, all of which have an infinite number of walls in the fundamental domain. We find that analogous to the Stern-Brocot tree, which generated the intercepts of the walls on the real line, the intercepts for the N >3 cases are generated by linear recurrence relations. Using the correspondence between the walls of marginal stability and the walls of the Weyl chamber of the corresponding BKM Lie superalgebra, we propose the Cartan matrices for the BKM Lie superalgebras corresponding to the N=5 and 6 models.Comment: 30 pages, 2 figure

    Modular Invariance for Twisted Modules over a Vertex Operator Superalgebra

    Get PDF
    The purpose of this paper is to generalize Zhu's theorem about characters of modules over a vertex operator algebra graded by integer conformal weights, to the setting of a vertex operator superalgebra graded by rational conformal weights. To recover SL_2(Z)-invariance of the characters it turns out to be necessary to consider twisted modules alongside ordinary ones. It also turns out to be necessary, in describing the space of conformal blocks in the supersymmetric case, to include certain `odd traces' on modules alongside traces and supertraces. We prove that the set of supertrace functions, thus supplemented, spans a finite dimensional SL_2(Z)-invariant space. We close the paper with several examples.Comment: 42 pages. Published versio

    Symmetries in M-theory: Monsters, Inc

    Full text link
    We will review the algebras which have been conjectured as symmetries in M-theory. The Borcherds algebras, which are the most general Lie algebras under control, seem natural candidates.Comment: 6 pages, talk given by PHL at Cargese 200
    corecore