52 research outputs found

    Reentrant charge order transition in the extended Hubbard model

    Full text link
    We study the extended Hubbard model with both on-site and nearest neighbor Coulomb repulsion (UU and VV, respectively) in the Dynamical Mean Field theory. At quarter filling, the model shows a transition to a charge ordered phase with different sublattice occupancies n_A \nen_B. The effective mass increases drastically at the critical VV and a pseudo-gap opens in the single-particle spectral function for higher values of VV. The Vc(T)V_c(T)-curve has a negative slope for small temperatures, i.e. the charge ordering transition can be driven by increasing the temperature. This is due to the higher spin-entropy of the charge ordered phase.Comment: 4 pages, 4 EPS figures included, REVTe

    In silico detection of a defective genomic RNA of Grapevine leafroll-associated virus 4 strain 5 in High-Throughput Sequencing data.

    Get PDF
    Grapevine leafroll disease (GLRD) is one of the most economically important viral diseases affecting grapevines (Maliogka et aI., 2015)

    Discovery and molecular characterization of a novel enamovirus, Grapevine enamovirus-1.

    Get PDF
    In this study, we describe a novel putative Enamovirus member, Grapevine enamovirus-1 (GEV-1), discovered by high-throughput sequencing (HTS). A limited survey using HTS of 17 grapevines (Vitis spp.) from the south, southeast, and northeast regions of Brazil led to the detection of GEV-1 exclusively on southern plants, infecting four grapevine cultivars (Cabernet Sauvignon, Semillon, CG 90450, and Cabernet franc) with a remark-able identity of around 99% at the nucleotide level. This novel virus was only detected in multiple-virus infected plants exhibiting viral-like symptoms. GEV-1 was also detected on a cv. Malvasia Longa by RT-PCR. We performed graft-transmissibility assays on GEV-1. The organization, products, and cis-acting regulatory elements of GEV-1 genome are also discussed here. The near complete genome sequence of GEV-1 was obtained during the course of this study, lacking only part of the 3 0 untranslated terminal region. This is the first report of a virus in the family Luteoviridae infecting grapevines. Based on its genomic properties and phylogenetic analyses, GEV-1 should be classified as a new member of the genus Enamovirus . Keywords High-throughput sequencing Virus discovery Luteoviridae Grapevine enamovirus-1 GEV-

    Molecular characterization of grapevine enamo-like virus, a novel putative member of the genus enamovirus.

    Get PDF
    Annals of the XXVII Brazilian Congress of Virology & XI Mercosur Meeting of Virology, Pirienópolis, GO, 2016

    A model of semimetallic behavior in strongly correlated electron systems

    Full text link
    Metals with values of the resistivity and the Hall coefficient much larger than typical ones, e.g., of sodium, are called semimetals. We suggest a model for semimetals which takes into account the strong Coulomb repulsion of the charge carriers, especially important in transition-metal and rare-earth compounds. For that purpose we extend the Hubbard model by coupling one additional orbital per site via hybridization to the Hubbard orbitals. We calculate the spectral function, resistivity and Hall coefficient of the model using dynamical mean-field theory. Starting from the Mott-insulating state, we find a transition to a metal with increasing hybridization strength (``self-doping''). In the metallic regime near the transition line to the insulator the model shows semimetallic behavior. We compare the calculated temperature dependence of the resistivity and the Hall coefficient with the one found experimentally for Yb4As3\rm Yb_4As_3. The comparison demonstrates that the anomalies in the transport properties of Yb4As3\rm Yb_4As_3 possibly can be assigned to Coulomb interaction effects of the charge carriers not captured by standard band structure calculations.Comment: 9 pages RevTeX with 7 ps figures, accepted by PR

    Electron-phonon vertex in the two-dimensional one-band Hubbard model

    Full text link
    Using quantum Monte Carlo techniques, we study the effects of electronic correlations on the effective electron-phonon (el-ph) coupling in a two-dimensional one-band Hubbard model. We consider a momentum-independent bare ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we find that the on-site Coulomb interaction UU acts to effectively suppress the ionic el-ph coupling at all electron- and phonon- momenta. In this regime, our numerical simulations are in good agreement with the results of perturbation theory to order U2U^2. However, entering the strong-correlation regime, we find that the forward scattering process stops decreasing and begins to substantially increase as a function of UU, leading to an effective el-ph coupling which is peaked in the forward direction. Whereas at weak and intermediate Coulomb interactions, screening is the dominant correlation effect suppressing the el-ph coupling, at larger UU values irreducible vertex corrections become more important and give rise to this increase. These vertex corrections depend crucially on the renormalized electronic structure of the strongly correlated system.Comment: 5 pages, 4 eps-figures, minor change
    corecore