24 research outputs found

    Basic Surgical Techniques in the Göttingen Minipig: Intubation, Bladder Catheterization, Femoral Vessel Catheterization, and Transcardial Perfusion

    Get PDF
    The emergence of the Göttingen minipig in research of topics such as neuroscience, toxicology, diabetes, obesity, and experimental surgery reflects the close resemblance of these animals to human anatomy and physiology 1-6.The size of the Göttingen minipig permits the use of surgical equipment and advanced imaging modalities similar to those used in humans 6-8. The aim of this instructional video is to increase the awareness on the value of minipigs in biomedical research, by demonstrating how to perform tracheal intubation, transurethral bladder catheterization, femoral artery and vein catheterization, as well as transcardial perfusion

    The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens

    No full text
    Nucleus accumbens (NAcc) has been implicated in several psychiatric disorders such as treatment resistant depression (TRD) and obsessive-compulsive disorder (OCD), and has been an ongoing experimental target for deep brain stimulation (DBS) in both rats and humans. In order to translate basic scientific results from rodents to the human setting a large animal model is needed to thoroughly study the effect of such therapeutic interventions. The aim of the study was, accordingly, to describe the basic anatomy of the Göttingen minipig NAcc and its retrograde connections.Tracing was carried out by MRI-guided stereotactic unilateral fluorogold injections in the NAcc of Göttingen minipigs. After two weeks the brains were sectioned and subsequently stained with Nissl-, autometallographic (AMG) development of myelin, and DARPP-32 and calbindin immunohistochemistry.The minipig NAcc was divided in a central core and an outer medial, ventral and lateral shell. We confirmed the NAcc to be a large and well-segregated structure towards its medial, ventral and lateral borders. The fluorogold tracing revealed inputs to NAcc from the medial parts of the prefrontal cortex, BA 25 (subgenual cortex), insula bilaterally, amygdala, the CA1-region of hippocampus, entorhinal cortex, subiculum, paraventricular and anterior parts of thalamus, dorsomedial parts of hypothalamus, substantia nigra, ventral tegmental area, the retrorubral field and the dorsal and median raphe nuclei.In conclusion the Göttingen minipig NAcc is a large ventral striatal structure that can be divided into a core and shell with prominent afferent connections from several subrhinal and infra-/prelimbic brain areas

    Online histological atlas of the Göttingen minipig brain.

    Get PDF
    The cytoarchitecture of the Göttingen minipig telencephalon has recently been elucidated in the published article (Bjarkam et al., 2017). The aim of the current paper is to describe how such data can be presented in an online histological atlas of the Gottingen minipig brain and how this atlas was constructed.Two sets of histological sections were used. One set was photographed in high resolution and labelled, the other set in low resolution (resized first set) was used for reference on the computer screen. The two sets of microphotographs enable, using the freely available JQuery Image Zoom Plugin, the subsequent construction of a simple HTML-based atlas web page with a 'virtual microscope like' style, which allowed magnifying of the base image (low-resolution image) up to the maximum resolution of the high-resolution image. In addition, we describe how the established histological atlas can be accompanied by a set of similar T1-weighted MRI pictures.Histological and MRI pictures are presented in atlas form on www.cense.dk/minipig_atlas/index.html. The described pipeline represent a cheap and freely available way to present histological images, in online virtual microscopic atlas form, and may thus be of general interest to anyone who would like to present histological data accordingly

    The telencephalon of the Göttingen minipig, cytoarchitecture and cortical surface anatomy

    No full text
    During the last 20 years pigs have become increasingly popular in large animal translational neuroscience research as an economical and ethical feasible substitute to non-human primates. The anatomy of the pig telencephalon is, however, not well known. We present, accordingly, a detailed description of the surface anatomy and cytoarchitecture of the Göttingen minipig telencephalon based on macrophotos and consecutive high-power microphotographs of 15 μm thick paraffin embedded Nissl-stained coronal sections. In 1-year-old specimens the formalin perfused brain measures approximately 55 × 47 × 36 mm (length, width, height) and weighs around 69 g. The telencephalic part of the Göttingen minipig cerebrum covers a large surface area, which can be divided into a neocortical gyrencephalic part located dorsal to the rhinal fissure, and a ventral subrhinal part dominated by olfactory, amygdaloid, septal, and hippocampal structures. This part of the telencephalon is named the subrhinal lobe, and based on cytoarchitectural and sulcal anatomy, can be discerned from the remaining dorsally located neocortical perirhinal/insular, pericallosal, frontal, parietal, temporal, and occipital lobes. The inner subcortical structure of the minipig telencephalon is dominated by a prominent ventricular system and large basal ganglia, wherein the putamen and the caudate nucleus posterior and dorsally are separated into two entities by the internal capsule, whereas both structures ventrally fuse into a large accumbens nucleus. The presented anatomical data is accompanied by surface renderings and high-power macrophotographs illustrating the telencephalic sulcal pattern, and the localization of the identified lobes and cytoarchitectonic areas. Additionally, 24 representative Nissl-stained telencephalic coronal sections are presented as supplementary material in atlas form on http://www.cense.dk/minipig_atlas/index.html and referred to as S1–S24 throughout the manuscript
    corecore