8 research outputs found

    Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole

    Get PDF
    This study aimed to develop films for potential delivery of omeprazole (OME) via the buccal mucosa of paediatric patients. Films were prepared using hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), sodium alginate (SA), carrageenan (CA) and metolose (MET) with polyethylene glycol (PEG 400) as plasticiser, OME (model drug) and L-arg (stabiliser). Gels (1% w/w) were prepared at 40°C using water and ethanol with PEG 400 (0–1% w/w) and dried in an oven (40°C). Optimised formulations containing OME and L-arg (1:1, 1:2 and 1:3) were prepared to investigate the stabilisation of the drug. Tensile properties (Texture analysis, TA), physical form (differential scanning calorimetry, DSC; X-ray diffraction, XRD; thermogravimetric analysis, TGA) and surface topography (scanning electron microscopy, SEM) were investigated. Based on the TA results, SA and MET films were chosen for OME loading and stabilisation studies as they showed a good balance between flexibility and toughness. Plasticised MET films were uniform and smooth whilst unplasticised films demonstrated rough lumpy surfaces. SA films prepared from aqueous gels showed some lumps on the surface, whereas SA films prepared from ethanolic gels were smooth and uniform. Drug-loaded gels showed that OME was unstable and therefore required addition of L-arg. The DSC and XRD suggested molecular dispersion of drug within the polymeric matrix. Plasticised (0.5% w/w PEG 400) MET films prepared from ethanolic (20% v/v) gels and containing OME: L-arg 1:2 showed the most ideal characteristics (transparency, ease of peeling and flexibility) and was selected for further investigation

    Dynamics of HIV Neutralization by a Microbicide Formulation Layer: Biophysical Fundamentals and Transport Theory

    Get PDF
    Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses ∼100 μm. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-μm-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality

    Relative Bioavailability of Chlorothiazide from Mucoadhesive Compacts in Pigs

    No full text
    The relative bioavailability of chlorothiazide from mucoadhesive polymeric compacts is compared to commercial oral suspension in pigs. A single-dose randomized study was conducted in 12 healthy pigs that are 9–10 weeks old. After overnight fasting, pigs were divided into two groups of six animals. To the first group, a reference product containing 50 mg of chlorothiazide suspension, and in the second group, test product (mucoadhesive compacts) chlorothiazide (50 mg) was administered with 75 mL of water via gastric tubes. Blood samples were collected between 0 to 24 h using catheters inserted into the jugular vein. Plasma was separated by protein precipitation, and chlorothiazide concentrations were determined using a high-performance liquid chromatography method. The mean Tmax and the Cmax of chlorothiazide following the administration of oral suspension and mucoadhesive compacts were 0.58 ± 0.20 h and 682.97 ± 415.69 ng/mL and 2.17 ± 0.98 h and 99.42 ± 124.08 ng/mL, respectively. The Kel and T1/2 of chlorothiazide were found to be 1.06 ± 0.28 h−1 and 0.70 ± 0.21 h from suspension and 0.95 ± 1.11 h−1 and 2.05 ± 1.90 h from the compacts, respectively. The Tmax of mucoadhesive compacts were significantly longer (p < 0.05; 2.17 h) than the reference products (0.58 h), whereas the Cmax of compacts were significantly lower (99 ng/mL) than the reference product (683 ng/mL; p < 0.05). The area under the curve (AUC) of compacts accounts only 50.15% (404.32 ± 449.93 ng h/mL) of the reference product’s AUC (806.27 ± 395.97 ng h/mL). The relative bioavailability of the compacts was lower than that of the suspension, and this may be due to the narrow window of absorption for chlorothiazide

    Fast-disintegrating sublingual tablets: Effect of epinephrine load on tablet characteristics

    No full text
    The aim of this study was to evaluate the effect of increasing epinephrine load on the characteristics of fast-disintegrating sublingual tablets for the potential emergency treatment of anaphylaxis. Four tablet formulations, A, B, C, and D, containing 0%, 6%, 12%, and 24% of epinephrine bitartrate, respectively, and microcrystalline cellulose:low-substituted hydroxypropyl cellulose (9∶1), were prepared by direct compression, at a range of compression forces. Tablet weight variation, content uniformity, hardness, disintegration time, wetting time, and friability were measured for each formulation at each compression force. All 4 tablet formulations at each compression force were within the United States Pharmacopeia (USP) limits for weight variation and content uniformity. A linear increase in compression force resulted in an exponential increase in hardness for all formulations, a linear increase in disintegration and wetting times of A, and an exponential increase in disintegration and wetting times of B, C, and D. At a mean±SD hardness of ≥2.3±0.2 kg, all tablet formulations passed the USP friability test. At a mean±SD hardness of ≤3.1±0.2 kg, all tablet formulations resulted in disintegration and wetting times of <10 seconds and <30 seconds, respectively. Tablets with drug loads from 0% to 24% epinephrine can be formulated with hardness, disintegration times, and wetting times suitable for sublingual administration
    corecore