8,845 research outputs found

    Superdiffusion in a class of networks with marginal long-range connections

    Full text link
    A class of cubic networks composed of a regular one-dimensional lattice and a set of long-range links is introduced. Networks parametrized by a positive integer k are constructed by starting from a one-dimensional lattice and iteratively connecting each site of degree 2 with a kkth neighboring site of degree 2. Specifying the way pairs of sites to be connected are selected, various random and regular networks are defined, all of which have a power-law edge-length distribution of the form P>(l)lsP_>(l)\sim l^{-s} with the marginal exponent s=1. In all these networks, lengths of shortest paths grow as a power of the distance and random walk is super-diffusive. Applying a renormalization group method, the corresponding shortest-path dimensions and random-walk dimensions are calculated exactly for k=1 networks and for k=2 regular networks; in other cases, they are estimated by numerical methods. Although, s=1 holds for all representatives of this class, the above quantities are found to depend on the details of the structure of networks controlled by k and other parameters.Comment: 10 pages, 9 figure

    Critical percolation of free product of groups

    Full text link
    In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pcp_c of a free product G1G2...GnG_1*G_2*...*G_n of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1,G2,...,GnG_1,G_2,...,G_n. For finite groups these equations are polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pcp_c for the Cayley graph of the modular group PSL2(Z)\hbox{PSL}_2(\mathbb Z) (with the standard generators) is .5199....5199..., the unique root of the polynomial 2p56p4+2p3+4p212p^5-6p^4+2p^3+4p^2-1 in the interval (0,1)(0,1). In the case when groups GiG_i can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1G2...GnG_1*G_2*...*G_n and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, pexpp_{\mathrm{exp}} of the free product is just the minimum of pexpp_{\mathrm{exp}} for the factors

    On a random walk with memory and its relation to Markovian processes

    Full text link
    We study a one-dimensional random walk with memory in which the step lengths to the left and to the right evolve at each step in order to reduce the wandering of the walker. The feedback is quite efficient and lead to a non-diffusive walk. The time evolution of the displacement is given by an equivalent Markovian dynamical process. The probability density for the position of the walker is the same at any time as for a random walk with shrinking steps, although the two-time correlation functions are quite different.Comment: 10 pages, 4 figure

    A new source detection algorithm using FDR

    Get PDF
    The False Discovery Rate (FDR) method has recently been described by Miller et al (2001), along with several examples of astrophysical applications. FDR is a new statistical procedure due to Benjamini and Hochberg (1995) for controlling the fraction of false positives when performing multiple hypothesis testing. The importance of this method to source detection algorithms is immediately clear. To explore the possibilities offered we have developed a new task for performing source detection in radio-telescope images, Sfind 2.0, which implements FDR. We compare Sfind 2.0 with two other source detection and measurement tasks, Imsad and SExtractor, and comment on several issues arising from the nature of the correlation between nearby pixels and the necessary assumption of the null hypothesis. The strong suggestion is made that implementing FDR as a threshold defining method in other existing source-detection tasks is easy and worthwhile. We show that the constraint on the fraction of false detections as specified by FDR holds true even for highly correlated and realistic images. For the detection of true sources, which are complex combinations of source-pixels, this constraint appears to be somewhat less strict. It is still reliable enough, however, for a priori estimates of the fraction of false source detections to be robust and realistic.Comment: 17 pages, 7 figures, accepted for publication by A

    Scaling behavior of the contact process in networks with long-range connections

    Full text link
    We present simulation results for the contact process on regular, cubic networks that are composed of a one-dimensional lattice and a set of long edges with unbounded length. Networks with different sets of long edges are considered, that are characterized by different shortest-path dimensions and random-walk dimensions. We provide numerical evidence that an absorbing phase transition occurs at some finite value of the infection rate and the corresponding dynamical critical exponents depend on the underlying network. Furthermore, the time-dependent quantities exhibit log-periodic oscillations in agreement with the discrete scale invariance of the networks. In case of spreading from an initial active seed, the critical exponents are found to depend on the location of the initial seed and break the hyper-scaling law of the directed percolation universality class due to the inhomogeneity of the networks. However, if the cluster spreading quantities are averaged over initial sites the hyper-scaling law is restored.Comment: 9 pages, 10 figure

    Another derivation of the geometrical KPZ relations

    Full text link
    We give a physicist's derivation of the geometrical (in the spirit of Duplantier-Sheffield) KPZ relations, via heat kernel methods. It gives a covariant way to define neighborhoods of fractals in 2d quantum gravity, and shows that these relations are in the realm of conformal field theory

    Quantitative estimates of discrete harmonic measures

    Full text link
    A theorem of Bourgain states that the harmonic measure for a domain in Rd\R^d is supported on a set of Hausdorff dimension strictly less than dd \cite{Bourgain}. We apply Bourgain's method to the discrete case, i.e., to the distribution of the first entrance point of a random walk into a subset of Zd\Z ^d, d2d\geq 2. By refining the argument, we prove that for all \b>0 there exists \rho (d,\b)N(d,\b), any xZdx \in \Z^d, and any A{1,...,n}dA\subset \{1,..., n\}^d | \{y\in\Z^d\colon \nu_{A,x}(y) \geq n^{-\b} \}| \leq n^{\rho(d,\b)}, where νA,x(y)\nu_{A,x} (y) denotes the probability that yy is the first entrance point of the simple random walk starting at xx into AA. Furthermore, ρ\rho must converge to dd as \b \to \infty.Comment: 16 pages, 2 figures. Part (B) of the theorem is ne

    Fast computation by block permanents of cumulative distribution functions of order statistics from several populations

    Full text link
    The joint cumulative distribution function for order statistics arising from several different populations is given in terms of the distribution function of the populations. The computational cost of the formula in the case of two populations is still exponential in the worst case, but it is a dramatic improvement compared to the general formula by Bapat and Beg. In the case when only the joint distribution function of a subset of the order statistics of fixed size is needed, the complexity is polynomial, for the case of two populations.Comment: 21 pages, 3 figure

    Shape-based peak identification for ChIP-Seq

    Get PDF
    We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events. The software T-PIC (Tree shape Peak Identification for ChIP-Seq) is available at http://math.berkeley.edu/~vhower/tpic.htmlComment: 12 pages, 6 figure
    corecore