8,857 research outputs found

    Every planar graph with the Liouville property is amenable

    Get PDF
    We introduce a strengthening of the notion of transience for planar maps in order to relax the standard condition of bounded degree appearing in various results, in particular, the existence of Dirichlet harmonic functions proved by Benjamini and Schramm. As a corollary we obtain that every planar non-amenable graph admits Dirichlet harmonic functions

    Superdiffusion in a class of networks with marginal long-range connections

    Full text link
    A class of cubic networks composed of a regular one-dimensional lattice and a set of long-range links is introduced. Networks parametrized by a positive integer k are constructed by starting from a one-dimensional lattice and iteratively connecting each site of degree 2 with a kkth neighboring site of degree 2. Specifying the way pairs of sites to be connected are selected, various random and regular networks are defined, all of which have a power-law edge-length distribution of the form P>(l)∌l−sP_>(l)\sim l^{-s} with the marginal exponent s=1. In all these networks, lengths of shortest paths grow as a power of the distance and random walk is super-diffusive. Applying a renormalization group method, the corresponding shortest-path dimensions and random-walk dimensions are calculated exactly for k=1 networks and for k=2 regular networks; in other cases, they are estimated by numerical methods. Although, s=1 holds for all representatives of this class, the above quantities are found to depend on the details of the structure of networks controlled by k and other parameters.Comment: 10 pages, 9 figure

    Critical percolation of free product of groups

    Full text link
    In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pcp_c of a free product G1∗G2∗...∗GnG_1*G_2*...*G_n of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1,G2,...,GnG_1,G_2,...,G_n. For finite groups these equations are polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pcp_c for the Cayley graph of the modular group PSL2(Z)\hbox{PSL}_2(\mathbb Z) (with the standard generators) is .5199....5199..., the unique root of the polynomial 2p5−6p4+2p3+4p2−12p^5-6p^4+2p^3+4p^2-1 in the interval (0,1)(0,1). In the case when groups GiG_i can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1∗G2∗...∗GnG_1*G_2*...*G_n and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, pexpp_{\mathrm{exp}} of the free product is just the minimum of pexpp_{\mathrm{exp}} for the factors

    Scaling behavior of the contact process in networks with long-range connections

    Full text link
    We present simulation results for the contact process on regular, cubic networks that are composed of a one-dimensional lattice and a set of long edges with unbounded length. Networks with different sets of long edges are considered, that are characterized by different shortest-path dimensions and random-walk dimensions. We provide numerical evidence that an absorbing phase transition occurs at some finite value of the infection rate and the corresponding dynamical critical exponents depend on the underlying network. Furthermore, the time-dependent quantities exhibit log-periodic oscillations in agreement with the discrete scale invariance of the networks. In case of spreading from an initial active seed, the critical exponents are found to depend on the location of the initial seed and break the hyper-scaling law of the directed percolation universality class due to the inhomogeneity of the networks. However, if the cluster spreading quantities are averaged over initial sites the hyper-scaling law is restored.Comment: 9 pages, 10 figure

    On a random walk with memory and its relation to Markovian processes

    Full text link
    We study a one-dimensional random walk with memory in which the step lengths to the left and to the right evolve at each step in order to reduce the wandering of the walker. The feedback is quite efficient and lead to a non-diffusive walk. The time evolution of the displacement is given by an equivalent Markovian dynamical process. The probability density for the position of the walker is the same at any time as for a random walk with shrinking steps, although the two-time correlation functions are quite different.Comment: 10 pages, 4 figure

    P-values for high-dimensional regression

    Full text link
    Assigning significance in high-dimensional regression is challenging. Most computationally efficient selection algorithms cannot guard against inclusion of noise variables. Asymptotically valid p-values are not available. An exception is a recent proposal by Wasserman and Roeder (2008) which splits the data into two parts. The number of variables is then reduced to a manageable size using the first split, while classical variable selection techniques can be applied to the remaining variables, using the data from the second split. This yields asymptotic error control under minimal conditions. It involves, however, a one-time random split of the data. Results are sensitive to this arbitrary choice: it amounts to a `p-value lottery' and makes it difficult to reproduce results. Here, we show that inference across multiple random splits can be aggregated, while keeping asymptotic control over the inclusion of noise variables. We show that the resulting p-values can be used for control of both family-wise error (FWER) and false discovery rate (FDR). In addition, the proposed aggregation is shown to improve power while reducing the number of falsely selected variables substantially.Comment: 25 pages, 4 figure

    A new source detection algorithm using FDR

    Get PDF
    The False Discovery Rate (FDR) method has recently been described by Miller et al (2001), along with several examples of astrophysical applications. FDR is a new statistical procedure due to Benjamini and Hochberg (1995) for controlling the fraction of false positives when performing multiple hypothesis testing. The importance of this method to source detection algorithms is immediately clear. To explore the possibilities offered we have developed a new task for performing source detection in radio-telescope images, Sfind 2.0, which implements FDR. We compare Sfind 2.0 with two other source detection and measurement tasks, Imsad and SExtractor, and comment on several issues arising from the nature of the correlation between nearby pixels and the necessary assumption of the null hypothesis. The strong suggestion is made that implementing FDR as a threshold defining method in other existing source-detection tasks is easy and worthwhile. We show that the constraint on the fraction of false detections as specified by FDR holds true even for highly correlated and realistic images. For the detection of true sources, which are complex combinations of source-pixels, this constraint appears to be somewhat less strict. It is still reliable enough, however, for a priori estimates of the fraction of false source detections to be robust and realistic.Comment: 17 pages, 7 figures, accepted for publication by A

    Palm pairs and the general mass-transport principle

    Get PDF
    We consider a lcsc group G acting properly on a Borel space S and measurably on an underlying sigma-finite measure space. Our first main result is a transport formula connecting the Palm pairs of jointly stationary random measures on S. A key (and new) technical result is a measurable disintegration of the Haar measure on G along the orbits. The second main result is an intrinsic characterization of the Palm pairs of a G-invariant random measure. We then proceed with deriving a general version of the mass-transport principle for possibly non-transitive and non-unimodular group operations first in a deterministic and then in its full probabilistic form.Comment: 26 page
    • 

    corecore